1146. Maximum Sum

Time limit: 0.5 second
Memory limit: 64 MB
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array.
As an example, the maximal sub-rectangle of the array:
0 −2 −7 0
9 2 −6 2
−4 1 −4 1
−1 8 0 −2
is in the lower-left-hand corner and has the sum of 15.

Input

The input consists of an N × N array of integers. The input begins with a single positive integerN on a line by itself indicating the size of the square two dimensional array. This is followed byN 2 integers separated by white-space (newlines and spaces). These N 2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [−127, 127].

Output

The output is the sum of the maximal sub-rectangle.

Sample

input output
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
15
 
Difficulty: 97
 
题意:求最大的子矩阵
分析:很经典的题。
知道最大子段和的做法。
然后枚举矩阵的上下界,按照最大子段和的做法做。
 
 
 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
int n, arr[N][N];
int sum[N][N], p[N]; inline void Input()
{
scanf("%d", &n);
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++) scanf("%d", &arr[i][j]);
} inline int Work(int *arr)
{
int ret = arr[], cnt = arr[];
for(int i = ; i <= n; i++)
{
if(cnt < ) cnt = arr[i];
else cnt += arr[i];
ret = max(ret, cnt);
}
return ret;
} inline void Solve()
{
int ans = -INF;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
sum[i][j] = sum[i - ][j] + arr[i][j];
for(int i = ; i <= n; i++)
for(int j = i; j <= n; j++)
{
for(int k = ; k <= n; k++)
p[k] = sum[j][k] - sum[i - ][k];
int cnt = Work(p);
/*if(ans < cnt)
{
ans = cnt;
printf("%d %d %d\n", ans, i, j);
}*/
ans = max(ans, cnt);
} cout << ans << endl;
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}

ural 1146. Maximum Sum的更多相关文章

  1. 最大子矩阵和 URAL 1146 Maximum Sum

    题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...

  2. ural 1146. Maximum Sum(动态规划)

    1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...

  3. URAL 1146 Maximum Sum(最大子矩阵的和 DP)

    Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...

  4. URAL 1146 Maximum Sum(DP)

    Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the large ...

  5. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  6. URAL 1146 Maximum Sum 最大子矩阵和

    题目:click here #include <bits/stdc++.h> using namespace std; typedef unsigned long long ll; con ...

  7. Timus 1146. Maximum Sum

    1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...

  8. POJ2479 Maximum sum[DP|最大子段和]

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 39599   Accepted: 12370 Des ...

  9. UVa 108 - Maximum Sum(最大连续子序列)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

随机推荐

  1. Linq查询

    //Linq查询 List<A1> a1 = new List<A1>(); a1.Add(, Name = , Gender = true }); a1.Add(, Name ...

  2. 用Mysqlbinlog备份BinLog文件

    默认情况下, mysqlbinlog读取二进制文件[BinLog]并以文本的方式呈现[text format].mysqlbinlog可以直接地从本地读取Log,也可以读取远程的Log[--read- ...

  3. file标签选择文件change事件失效处理方法

    file只能处罚一次change事件,在change事件中重新替换file标签即可生效 eg: $(function(){ //上传图片 $("body").on("ch ...

  4. 优化MyBatis配置文件中的配置

    一.为实体类定义别名,简化sql映射xml文件中的引用 之前,我们在sql映射xml文件中的引用实体类时,需要写上实体类的全类名(包名+类名),如下: <!-- 创建用户(Create) --& ...

  5. CLR via C#(16)--泛型

    泛型就像是一个模板,常常定义一些通用的算法,具体调用时再替换成实际的数据类型,提高了代码的可重用性. 一.初识泛型 1. 简单实例 以最常用的FCL中的泛型List<T >为例: stat ...

  6. Oracle Redhat5.5

    http://blog.csdn.net/yakson/article/details/9012129 http://www.cnblogs.com/cnmarkao/p/3670153.html h ...

  7. MVC4 遇到问题总结

    1.路径编写: 举例1.<img  src="../Login/VailCode" width="108" height="40"&g ...

  8. 【openGL】指定着色模型

    #include "stdafx.h" #include <GL/glut.h> #include <stdlib.h> #include <math ...

  9. ASP.NET WebApi Document Helper

    本项目实现了ASP.NET WebApi 接口文档的自动生成功能. 微软出的ASP.NET WebApi Help Page固然好用,但是我们项目基于Owin 平台的纯WebApi 项目,不想引入MV ...

  10. 关于WCF的一些注意事项

    1.服务代理,建立通道的方法,要注意及时关掉代理,因为服务设置有一个服务的最大连接数,超过这个连接数,则后面的连接将会等待,一直到超时,报错!! 2.在已有配置的基础上,利用代码更改终结点,如果重设了 ...