HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)
题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5739
Description
Professor Zhang has an undirected graph G with n vertices and m edges. Each vertex is attached with a weight wi. Let Gi be the graph after deleting the i-th vertex from graph G. Professor Zhang wants to find the weight of G1,G2,...,Gn.
The weight of a graph G is defined as follows:
1. If G is connected, then the weight of G is the product of the weight of each vertex in G.
2. Otherwise, the weight of G is the sum of the weight of all the connected components of G.
A connected component of an undirected graph G is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in G.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and m (2≤n≤105,1≤m≤2×105) -- the number of vertices and the number of edges.
The second line contains n integers w1,w2,...,wn (1≤wi≤109), denoting the weight of each vertex.
In the next m lines, each contains two integers xi and yi (1≤xi,yi≤n,xi≠yi), denoting an undirected edge.
There are at most 1000 test cases and ∑n,∑m≤1.5×106.
Output
For each test case, output an integer $S = (\sum\limits_{i=1}^{n}i\cdot z_i) \text{ mod } (10^9 + 7)$, where zi is the weight of Gi.
Sample Input
1
3 2
1 2 3
1 2
2 3
Sample Output
20
分析
题目大概说给一张无向点带有权无向图。定义连通图的权值为图中各点权的乘积,图的权值为其包含的各连通图的权和。设$z_i$为删除i点后图的权值,求$S = (\sum\limits_{i=1}^{n}i\cdot z_i) \text{ mod } (10^9 + 7)$。
官方题解这么说的:
显然, 只要删掉关键点才会使图不联通. 对于其他点, 权值很容易计算.
首先求出所有的点双联通分量, 对于每一个点双联通分量$S$, 新建一个节点$s$, 向$S$中每个节点$v$连边. 这样一来, 新增的点和原来图中的点会构成一个森林(据说这个有个名字, block forest data structure). 很容易观察到, 叶子节点肯定都是非关键点, 内部节点要么是关键点, 要么是新增的节点.
对于这个森林$F$, 删掉一个关键点或者一个叶子$i$之后, 会得到一个新森林$F_i$, 这个$F_i$对应的连通块集合和$G_i$对应的连通块集合其实是一样的(不考虑那些新增的点). 显然$G_i$的权值和$F_i$的权值也是一样的, $F_i$的权值我们很容易通过树形dp算出来, 那么$G_i$的权值也随之而出.
可以在网上搜到关于用那个BF在线性时间计算所有关节点的影响的论文。。里面有这么一张图:
这样就好理解了。
设新加圆形结点的权为1,在那棵构造出来的树中用dp求出各个结点的两个信息:
- pro[u]表示u为根的子树内各个结点权值的乘积
- sum[u]表示Σpro[v](u为原本图中的结点,v为u的孩子结点)
最后通过枚举要删除的各个点,再加上乘法逆元搞搞,就能直接通过这两个信息很快地求出删除某结点后新的总权值。
另外。。有个地方空间开太小WA了好久。。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 111111
#define MAXM 222222 struct Edge{
int v,flag,next;
}edge[MAXM<<1];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].v=v; edge[NE].flag=0; edge[NE].next=head[u];
head[u]=NE++;
} struct TEdge{
int v,next;
}tEdge[MAXM<<4];
int tNE,tHead[MAXN<<1];
void addEdge(int u,int v,int nothing){
tEdge[tNE].v=v; tEdge[tNE].next=tHead[u];
tHead[u]=tNE++;
} int dn,dfn[MAXN],low[MAXN];
int stack[MAXM],top;
int root[MAXN],rn; void tarjan(int u,int rt){
dfn[u]=low[u]=++dn;
for(int i=head[u]; i!=-1; i=edge[i].next){
if(edge[i].flag) continue;
edge[i].flag=edge[i^1].flag=1;
stack[++top]=i; int v=edge[i].v; if(dfn[v]){
low[u]=min(low[u],dfn[v]);
continue;
} tarjan(v,rt);
low[u]=min(low[u],low[v]); if(low[v]>=dfn[u]){
++rn;
int k;
do{
k=stack[top--];
root[edge[k].v]=rt;
root[edge[k^1].v]=rt;
addEdge(rn,edge[k].v,0);
addEdge(edge[k].v,rn,0);
addEdge(rn,edge[k^1].v,0);
addEdge(edge[k^1].v,rn,0);
}while(edge[k^1].v!=u);
}
}
} int n,weight[MAXN]; bool vis[MAXN<<1];
long long sum[MAXN<<1],pro[MAXN<<1];
void dfs(int u){
vis[u]=1;
sum[u]=0; pro[u]=(u<=n) ? weight[u] : 1;
for(int i=tHead[u]; i!=-1; i=tEdge[i].next){
int v=tEdge[i].v;
if(vis[v]) continue;
dfs(v);
if(u<=n){
sum[u]+=pro[v];
sum[u]%=1000000007;
}
pro[u]*=pro[v];
pro[u]%=1000000007;
}
} long long ine(long long x){
long long res=1;
int n=1000000007-2;
while(n){
if(n&1){
res*=x; res%=1000000007;
}
x*=x; x%=1000000007;
n>>=1;
}
return res;
} int main(){
int t,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=1; i<=n; ++i){
scanf("%d",weight+i);
} NE=0;
memset(head,-1,sizeof(head));
int a,b;
while(m--){
scanf("%d%d",&a,&b);
addEdge(a,b);
addEdge(b,a);
} dn=0; memset(dfn,0,sizeof(dfn));
rn=n; memset(root,0,sizeof(root));
top=0;
tNE=0; memset(tHead,-1,sizeof(tHead));
for(int i=1; i<=n; ++i){
if(dfn[i]==0) tarjan(i,rn+1);
} long long tot=0; memset(vis,0,sizeof(vis));
for(int i=1; i<=n; ++i){
if(vis[i]) continue;
if(root[i]){
dfs(root[i]);
tot+=pro[root[i]];
tot%=1000000007;
}else{
tot+=weight[i];
tot%=1000000007;
}
} long long ans=0; for(int i=1; i<=n; ++i){
if(root[i]){
ans+=(tot-pro[root[i]]+pro[root[i]]*ine(pro[i])%1000000007+sum[i])%1000000007*i;
ans%=1000000007;
}else{
ans+=(tot-weight[i])*i;
ans%=1000000007;
}
} if(ans<0) ans+=1000000007;
printf("%lld\n",ans);
}
return 0;
}
HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)的更多相关文章
- [HDU5739]Fantasia(圆方树DP)
题意:给一张无向点带有权无向图.定义连通图的权值为图中各点权的乘积,图的权值为其包含的各连通图的权和.设z_i为删除i点后图的权值,求$S = (\sum\limits_{i=1}^{n}i\cdot ...
- HDU5739 Fantasia【点双连通分量 割点】
HDU5739 Fantasia 题意: 给出一张\(N\)个点的无向图\(G\),每个点都有权值\(w_i\),要求计算\(\sum_{i=1}^{N}i\cdot G_i % 1e9+7\) 其中 ...
- HDU 5739 Fantasia 双连通分量 树形DP
题意: 给出一个无向图,每个顶点有一个权值\(w\),一个连通分量的权值为各个顶点的权值的乘积,一个图的权值为所有连通分量权值之和. 设删除顶点\(i\)后的图\(G_i\)的权值为\(z_i\),求 ...
- POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 12439 Acce ...
- 【POJ 2942】Knights of the Round Table(点双连通分量,二分图染色)
圆桌会议必须满足:奇数个人参与,相邻的不能是敌人(敌人关系是无向边). 求无论如何都不能参加会议的骑士个数.只需求哪些骑士是可以参加的. 我们求原图的补图:只要不是敌人的两个人就连边. 在补图的一个奇 ...
- 【POJ 3177】Redundant Paths(边双连通分量)
求出每个边双连通分量缩点后的度,度为1的点即叶子节点.原图加上(leaf+1)/2条边即可变成双连通图. #include <cstdio> #include <cstring> ...
- Knights of the Round Table-POJ2942(双连通分量+交叉染色)
Knights of the Round Table Description Being a knight is a very attractive career: searching for the ...
- poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 9169 Accep ...
- POJ3352 Road Construction (双连通分量)
Road Construction Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
随机推荐
- iOS中UITableView的一些设置
不可滑动: ? 1 tableView.userInteractionEnabled = NO; 也可以在storyboard中的userInteractionEnable属性设置 显示导向箭头: ? ...
- [Android Pro] Gradle tip #3-Task顺序
reference to : http://blog.csdn.net/lzyzsd/article/details/46935405 原文链接 我注意到我在使用Gradle的时候遇到的大多数问题都是 ...
- mysql 只导数据不含表结构
mysqldump -t 数据库名 -uroot -p > xxx.sql
- VS对路径的访问被拒绝
问题:权限问题. 1.检查自己电脑账户.是否是Administrator.如果没有启用.在[我的电脑]——[管理]——[本地用户和组]——[用户]——[Administrator]——[属性启用] 2 ...
- ckplayer视频播放插件使用
研究ckplayer插件播放视频,播放视频需要配置信息修改如下: 1.设置ckplayer.js中的logo: 'null' 可以隐藏视频播放头部的图标: 2.设置ckplayer.js中的ckcpt ...
- uploadify文件批量上传
uploadify能够时间文件的批量上传,JS文件包下载地址,使用说明可以参考官网文档(http://www.uploadify.com/documentation/) 使用方法如下代码: $(&qu ...
- 使用html5 canvas绘制圆形或弧线
注意:本文属于<html5 Canvas绘制图形入门详解>系列文章中的一部分.如果你是html5初学者,仅仅阅读本文,可能无法较深入的理解canvas,甚至无法顺畅地通读本文.请点击上述链 ...
- LINQ To DataSet 示例
如果在项目遇到这样的问题如:DataTable1和DataTable2需要根据一定的规则进行合并成一个DataTable3. 问题1:DataTable1不是读数据库表的结果,而是合成的数据集,因此无 ...
- js this的使用举例
js this的使用举例 <script type="text/javascript"> function test(obj){ obj.style.width= ob ...
- web.xml中同一servlet/filter配置多个url-pattern
转自:http://blog.sina.com.cn/s/blog_4c2c2a0c0100dh67.html 若你的servlet要多个地址,或你的filter需要过滤不同的url如有*.jsp,* ...