Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

  • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
  • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell] 分析:

因为当前的选择对后面的选择会产生影响,我们可以倒着来分析。

我们用maximumProfit[i]来表示从i 到 length - 1 可以获取的最大profit. 怎么计算maximumProfit[i]呢?那么对于i来讲,最坏情况是maximumProfit[i] = maximumProfit[i + 1].

然后我们把price[i]作为当前最低价,如果后面发现更高的价格price[j],我们就做出更新。

if (j < length - 2) {
  maximumProfit[i] = Math.max(prices[j] - low + maximumProfit[j + 2], maximumProfit[i]);
} else {
  maximumProfit[i] = Math.max(prices[j] - low, maximumProfit[i]);
}

 public int maxProfit(int[] prices) {
if (prices == null || prices.length <= )
return ; int length = prices.length;
int[] maximumProfit = new int[length];
maximumProfit[length - ] = ;
maximumProfit[length - ] = Math.max(, prices[length - ] - prices[length - ]); for (int i = length - ; i >= ; i--) {
maximumProfit[i] = maximumProfit[i + ];
int low = prices[i];
for (int j = i + ; j < length; j++) {
if (prices[j] > low) {
if (j < length - ) {
maximumProfit[i] = Math.max(prices[j] - low + maximumProfit[j + ], maximumProfit[i]);
} else {
maximumProfit[i] = Math.max(prices[j] - low, maximumProfit[i]);
}
} else {
low = prices[j];
}
}
}
return maximumProfit[];
}

很明显,时间总复杂度为O(n^2).

另一个方法:

Analysis: https://discuss.leetcode.com/topic/30431/easiest-java-solution-with-explanations

1. Define States

To represent the decision at index i:

  • buy[i]: Max profit till index i. The series of transaction is ending with a buy.
  • sell[i]: Max profit till index i. The series of transaction is ending with a sell.

To clarify:

  • Till index i, the buy / sell action must happen and must be the last action. It may not happen at index i. It may happen at i - 1, i - 2, ... 0.
  • In the end n - 1, return sell[n - 1]. Apparently we cannot finally end up with a buy. In that case, we would rather take a rest at n - 1.
  • For special case no transaction at all, classify it as sell[i], so that in the end, we can still return sell[n - 1]. Thanks @alex153 @kennethliaoke @anshu2.

2. Define Recursion

  • buy[i]: To make a decision whether to buy at i, we either take a rest, by just using the old decision at i - 1, or sell at/beforei - 2, then buy at i, We cannot sell at i - 1, then buy at i, because of cooldown.
  • sell[i]: To make a decision whether to sell at i, we either take a rest, by just using the old decision at i - 1, or buy at/before i - 1, then sell at i.

So we get the following formula:

buy[i] = Math.max(buy[i - 1], sell[i - 2] - prices[i]);
sell[i] = Math.max(sell[i - 1], buy[i - 1] + prices[i]);

3. Optimize to O(1) Space

DP solution only depending on i - 1 and i - 2 can be optimized using O(1) space.

  • Let b2, b1, b0 represent buy[i - 2], buy[i - 1], buy[i]
  • Let s2, s1, s0 represent sell[i - 2], sell[i - 1], sell[i]

Then arrays turn into Fibonacci like recursion:

b0 = Math.max(b1, s2 - prices[i]);
s0 = Math.max(s1, b1 + prices[i]);

4. Write Code in 5 Minutes

First we define the initial states at i = 0:

  • We can buy. The max profit at i = 0 ending with a buy is -prices[0].
  • We cannot sell. The max profit at i = 0 ending with a sell is 0.
 public int maxProfit(int[] prices) {
if(prices == null || prices.length <= ) return ; int b0 = -prices[], b1 = b0;
int s0 = , s1 = , s2 = ; for(int i = ; i < prices.length; i++) {
b0 = Math.max(b1, s2 - prices[i]);
s0 = Math.max(s1, b1 + prices[i]);
b1 = b0; s2 = s1; s1 = s0;
}
return s0;
}

Best Time to Buy and Sell Stock with Cooldown的更多相关文章

  1. leetcode 121. Best Time to Buy and Sell Stock 、122.Best Time to Buy and Sell Stock II 、309. Best Time to Buy and Sell Stock with Cooldown

    121. Best Time to Buy and Sell Stock 题目的要求是只买卖一次,买的价格越低,卖的价格越高,肯定收益就越大 遍历整个数组,维护一个当前位置之前最低的买入价格,然后每次 ...

  2. Leetcode之动态规划(DP)专题-309. 最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown)

    Leetcode之动态规划(DP)专题-309. 最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown) 股票问题: 121. 买卖股票 ...

  3. [LeetCode] Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  5. 【LeetCode】309. Best Time to Buy and Sell Stock with Cooldown 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  6. LeetCode Best Time to Buy and Sell Stock with Cooldown

    原题链接在这里:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/ 题目: Say you hav ...

  7. 121. 122. 123. 188. Best Time to Buy and Sell Stock *HARD* 309. Best Time to Buy and Sell Stock with Cooldown -- 买卖股票

    121. Say you have an array for which the ith element is the price of a given stock on day i. If you ...

  8. 309. Best Time to Buy and Sell Stock with Cooldown

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  9. 解题报告Best Time to Buy and Sell Stock with Cooldown

    题目 Say you have an array for which the ith element is the price of a given stock on day i. Design an ...

随机推荐

  1. Jsp与servlet的区别

     Jsp与servlet的区别 2011-12-09 16:27:47 分类: Java 1.jsp经编译后就变成了Servlet.(JSP的本质就是Servlet,JVM只能识别java的类,不能识 ...

  2. MongoDB创建数据库和集合命令db.createCollection详解(转)

    切换/创建数据库 use yourDB;  当创建一个集合(table)的时候会自动创建当前数据库 完整的命令如下:db.createCollection(name, {capped: <Boo ...

  3. php 遍历目录下的所以文件和文件夹

    <?php/** * 遍历文件夹和文件列 * @author lizhiming * @date 2016/06/30 */define('DS', DIRECTORY_SEPARATOR); ...

  4. php/js获取客户端mac地址的实现代码

    这篇文章主要介绍了如何在php与js中分别获取客户度mac地址的方法,需要的朋友可以参考下   废话不多讲,直接上代码吧! 复制代码 代码如下: <?php   class MacAddr {  ...

  5. svn cleanup failed–previous operation has not finished; run cleanup if it was interrupted

    svn cleanup failed–previous operation has not finished; run cleanup if it was interrupted (2014-08-1 ...

  6. ASP CDONTS.NEWMAIL组件发送电邮(附下载)

    附CDONT.NEWMAIL组件下载地址:http://files.cnblogs.com/files/colinliu/cdonts.rar ASP常规发送方法: <% dim mail se ...

  7. 如何在R中加载”xlsx”包

    1.下载安装对应系统位数的JDK包(Java SE Development Kit) 2.完成后,安装rJava包-low-level r to Java Interface install.pack ...

  8. 黄学长模拟day1 球的序列

    N个编号为1-n的球,每个球都有唯一的编号.这些球被排成两种序列,分别为A.B序列,现在需要重新寻找一个球的序列l,对于这个子序列l中任意的两个球,要求j,k(j<k),都要求满足lj在A中位置 ...

  9. Mac Pro 编译安装 PHP扩展 -- Swoole扩展

    回顾下先前的安装笔记: PHP5不重新编译,如何安装自带的未安装过的扩展,如soap扩展? #下载 Swoole-1.8.10后,开始编译# cd /Users/jianbao/Downloads/s ...

  10. scanf函数与输入缓冲区

    本文链接:http://www.cnblogs.com/xxNote/p/4008668.html 今天看书的时候遇到scanf函数与缓冲区的问题,产生了一些猜想即:应该有一个指针来记录缓冲区中读取到 ...