Apache Hadoop NextGen MapReduce (YARN)

MapReduce has undergone a complete overhaul in hadoop-0.23 and we now have, what we call, MapReduce 2.0 (MRv2) or YARN.

The fundamental idea of MRv2 is to split up the two major functionalities of the JobTracker, resource management and job scheduling/monitoring, into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a DAG of jobs.

The ResourceManager and per-node slave, the NodeManager (NM), form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system.

The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.

The ResourceManager has two main components: Scheduler and ApplicationsManager.

The Scheduler is responsible for allocating resources to the various running applications subject to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that it performs no monitoring or tracking of status for the application. Also, it offers no guarantees about restarting failed tasks either due to application failure or hardware failures. The Scheduler performs its scheduling function based the resource requirements of the applications; it does so based on the abstract notion of a resource Container which incorporates elements such as memory, cpu, disk, network etc. In the first version, only memory is supported.

The Scheduler has a pluggable policy plug-in, which is responsible for partitioning the cluster resources among the various queues, applications etc. The current Map-Reduce schedulers such as the CapacityScheduler and the FairScheduler would be some examples of the plug-in.

The CapacityScheduler supports hierarchical queues to allow for more predictable sharing of cluster resources

The ApplicationsManager is responsible for accepting job-submissions, negotiating the first container for executing the application specific ApplicationMaster and provides the service for restarting the ApplicationMaster container on failure.

The NodeManager is the per-machine framework agent who is responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager/Scheduler.

The per-application ApplicationMaster has the responsibility of negotiating appropriate resource containers from the Scheduler, tracking their status and monitoring for progress.

MRV2 maintains API compatibility with previous stable release (hadoop-1.x). This means that all Map-Reduce jobs should still run unchanged on top of MRv2 with just a recompile.

from:http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

YARN :Architecture的更多相关文章

  1. Storm on Yarn :原理分析+平台搭建

    Storm on YARN: Storm on YARN被视为大规模Web应用与传统企业应用之间的桥梁.它将Storm事件处理平台与YARN(Yet Another Resource Negotiat ...

  2. [BigData - Hadoop - YARN] YARN:下一代 Hadoop 计算平台

    Apache Hadoop 是最流行的大数据处理工具之一.它多年来被许多公司成功部署在生产中.尽管 Hadoop 被视为可靠的.可扩展的.富有成本效益的解决方案,但大型开发人员社区仍在不断改进它.最终 ...

  3. Apache Hadoop YARN: 背景及概述

    从2012年8月开始Apache Hadoop YARN(YARN = Yet Another Resource Negotiator)成了Apache Hadoop的一项子工程.自此Apache H ...

  4. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

  5. Spark On Yarn:提交Spark应用程序到Yarn

    转载自:http://lxw1234.com/archives/2015/07/416.htm 关键字:Spark On Yarn.Spark Yarn Cluster.Spark Yarn Clie ...

  6. 【原创】大数据基础之Spark(2)Spark on Yarn:container memory allocation容器内存分配

    spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_154 ...

  7. AeroSpike踩坑手记1:Architecture of a Real Time Operational DBMS论文导读

    又开了一个新的坑,笔者工作之后维护着一个 NoSQL 数据库.而笔者维护的数据库正是基于社区版本的 Aerospike打造而来.所以这个踩坑系列的文章属于工作总结型的内容,会将使用开发 Aerospi ...

  8. 第1节 yarn:15、关于yarn中常用的参数设置

    第一个参数:container分配最小内存 yarn.scheduler.minimum-allocation-mb     1024   给应用程序container分配的最小内存 第二个参数:co ...

  9. 第1节 yarn:14、yarn集群当中的三种调度器

    yarn当中的调度器介绍: 第一种调度器:FIFO Scheduler  (队列调度器) 把应用按提交的顺序排成一个队列,这是一个先进先出队列,在进行资源分配的时候,先给队列中最头上的应用进行分配资源 ...

随机推荐

  1. Centos6.4安装erlang并配置mysql数据库

    在安装时,一定要使用Centos6.4光盘为yum源,否则可能使用了版本有问题的openssl 1.首先要先安装GCC GCC-C++ Openssl等依赖模块: yum -y install mak ...

  2. Linux 网络编程详解五(TCP/IP协议粘包解决方案二)

    ssize_t recv(int s, void *buf, size_t len, int flags); --与read相比,只能用于网络套接字文件描述符 --当flags参数的值设置为MSG_P ...

  3. eval的对于验证数学公式的用处

    var a=10,b=20; var s=a+b+((a/b)+(a+(a-b)))+(11)/a; var r=eval(s); console.log(r); 只要不报错,说明公式正确, 报错公式 ...

  4. CentOs中mysql的安装与配置

    在linux中安装数据库首选MySQL,Mysql数据库的第一个版本就是发行在Linux系统上,其他选择还可以有postgreSQL,oracle等 在Linux上安装mysql数据库,我们可以去其官 ...

  5. QTableView 一列添加两个按钮

    在QTableView的一列里添加两个按钮,之前添加一个按钮的思路是一样的,只是计算了一下按钮的宽,放两个按钮而已. 添加一个按钮的例子:QTableView 添加按钮 本例源代码:QtTowButt ...

  6. 基于DDD的.NET开发框架 - ABP领域服务

    返回ABP系列 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)”的简称. ASP.NET Boilerplate是一个用最佳实践和流行技术开发现代WEB应 ...

  7. JAVA对象和XML文档、原来他们之间还有这一出

    最近项目开发中遇到一个问题,访问接口不再通过url地址请求的方式,而是 通过socket发送xml格式的报文到指定服务器来进行信息的统一认证.. 因此组装xml格式的报文字符串以及解析服务器返回的xm ...

  8. iostat命令详解

    iostat iostat用于输出CPU和磁盘I/O相关的统计信息. 命令格式: iostat [ -c | -d ] [ -k | -m ] [ -t ] [ -V ] [ -x ] [ devic ...

  9. 使用 Socket 通信实现 FTP 客户端程序(来自IBM)

    FTP 客户端如 FlashFXP,File Zilla 被广泛应用,原理上都是用底层的 Socket 来实现.FTP 客户端与服务器端进行数据交换必须建立两个套接字,一个作为命令通道,一个作为数据通 ...

  10. js中各种宽度高度总结

    offsetWidth 是对象的可见宽度,包滚动条等边线,会随窗口的显示大小改变 IE6.0.FF1.06+:offsetWidth = width + padding + borderoffsetH ...