Apache Hadoop NextGen MapReduce (YARN)

MapReduce has undergone a complete overhaul in hadoop-0.23 and we now have, what we call, MapReduce 2.0 (MRv2) or YARN.

The fundamental idea of MRv2 is to split up the two major functionalities of the JobTracker, resource management and job scheduling/monitoring, into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a DAG of jobs.

The ResourceManager and per-node slave, the NodeManager (NM), form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system.

The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.

The ResourceManager has two main components: Scheduler and ApplicationsManager.

The Scheduler is responsible for allocating resources to the various running applications subject to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that it performs no monitoring or tracking of status for the application. Also, it offers no guarantees about restarting failed tasks either due to application failure or hardware failures. The Scheduler performs its scheduling function based the resource requirements of the applications; it does so based on the abstract notion of a resource Container which incorporates elements such as memory, cpu, disk, network etc. In the first version, only memory is supported.

The Scheduler has a pluggable policy plug-in, which is responsible for partitioning the cluster resources among the various queues, applications etc. The current Map-Reduce schedulers such as the CapacityScheduler and the FairScheduler would be some examples of the plug-in.

The CapacityScheduler supports hierarchical queues to allow for more predictable sharing of cluster resources

The ApplicationsManager is responsible for accepting job-submissions, negotiating the first container for executing the application specific ApplicationMaster and provides the service for restarting the ApplicationMaster container on failure.

The NodeManager is the per-machine framework agent who is responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager/Scheduler.

The per-application ApplicationMaster has the responsibility of negotiating appropriate resource containers from the Scheduler, tracking their status and monitoring for progress.

MRV2 maintains API compatibility with previous stable release (hadoop-1.x). This means that all Map-Reduce jobs should still run unchanged on top of MRv2 with just a recompile.

from:http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

YARN :Architecture的更多相关文章

  1. Storm on Yarn :原理分析+平台搭建

    Storm on YARN: Storm on YARN被视为大规模Web应用与传统企业应用之间的桥梁.它将Storm事件处理平台与YARN(Yet Another Resource Negotiat ...

  2. [BigData - Hadoop - YARN] YARN:下一代 Hadoop 计算平台

    Apache Hadoop 是最流行的大数据处理工具之一.它多年来被许多公司成功部署在生产中.尽管 Hadoop 被视为可靠的.可扩展的.富有成本效益的解决方案,但大型开发人员社区仍在不断改进它.最终 ...

  3. Apache Hadoop YARN: 背景及概述

    从2012年8月开始Apache Hadoop YARN(YARN = Yet Another Resource Negotiator)成了Apache Hadoop的一项子工程.自此Apache H ...

  4. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

  5. Spark On Yarn:提交Spark应用程序到Yarn

    转载自:http://lxw1234.com/archives/2015/07/416.htm 关键字:Spark On Yarn.Spark Yarn Cluster.Spark Yarn Clie ...

  6. 【原创】大数据基础之Spark(2)Spark on Yarn:container memory allocation容器内存分配

    spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_154 ...

  7. AeroSpike踩坑手记1:Architecture of a Real Time Operational DBMS论文导读

    又开了一个新的坑,笔者工作之后维护着一个 NoSQL 数据库.而笔者维护的数据库正是基于社区版本的 Aerospike打造而来.所以这个踩坑系列的文章属于工作总结型的内容,会将使用开发 Aerospi ...

  8. 第1节 yarn:15、关于yarn中常用的参数设置

    第一个参数:container分配最小内存 yarn.scheduler.minimum-allocation-mb     1024   给应用程序container分配的最小内存 第二个参数:co ...

  9. 第1节 yarn:14、yarn集群当中的三种调度器

    yarn当中的调度器介绍: 第一种调度器:FIFO Scheduler  (队列调度器) 把应用按提交的顺序排成一个队列,这是一个先进先出队列,在进行资源分配的时候,先给队列中最头上的应用进行分配资源 ...

随机推荐

  1. Jersey the RESTful Web Services in Java

    Jersey 是一个JAX-RS的实现, JAX-RS即Java API for RESTful Web Services, 支持按照表述性状态转移(REST)架构风格创建Web服务. REST 中最 ...

  2. 阿里云修改默认的ssh端口

    Linux服务器的ssh服务支持远程访问服务器,默认的ssh端口号是22.为了安全起见,很多用户会将端口号由22改为其他的端口号.  如果遇到修改端口号并重启ssh服务后,新的端口号不生效,请参考以下 ...

  3. jboss的时区问题

    默认情况下,jboss启动时,使用的时区是“+0:00”区,而中国所在的时间为"+8:00"区(所谓的东8区),最终java取当前时间时,总比北京时间慢8个小时 解决办法: 新建一 ...

  4. Caffe学习系列(2):数据层及参数

    要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件 ...

  5. CAP原理的证明

    CAP概述 C: Consistency 一致性 A: Availability 可用性 P:Partition Tolerance分区容错性 CAP理论的核心是:一个分布式系统不可能同时很好的满足一 ...

  6. 简单谈谈dom解析xml和html

    前言 文件对象模型(Document Object Model,简称DOM),是W3C组织推荐的处理可扩展标志语言的标准编程接口.html,xml都是基于这个模型构造的.这也是一个W3C推出的标准.j ...

  7. 【分布式协调器】Paxos的工程实现-cocklebur选举

    其实整个项目中一个最主要的看点就是选举算法,而这部分也是逻辑最复杂最难理解的部分.不同的实现在不同的场景下的策略也不尽相同,而且场景非常之多.接下来我们一起来看一下Cocklebur的实现思路. 一个 ...

  8. 用Dart&Henson玩转Activity跳转

    用Dart&Henson玩转Activity跳转 Extra是Android标准的组件之间(Activity/Fragment/Service等)传递数据的方式.本文介绍了开源项目Dart的使 ...

  9. dev gridcontrol纵向合并单元格设置

    1.要设置gridcontrol中指定列(columns中选中指定列)的AllowMerge属性为true; 2.要设置gridview中AllowCellMerge的属性为true; 3.如果只合并 ...

  10. 【转】Java 项目UML反向工程转化工具

    原文链接:http://www.cnblogs.com/bakari/p/3561207.html 今天在看一个模拟器的源码,一个包里有多个类,一个类里又有多个属性和方法,如果按顺序看下来,不仅不能对 ...