mapper和reducer的划分

mapper的数量等于输入文件被划分成的分块数,这取决于输入文件的大小以及文件块的大小。一个map操作只处理一个输入分片。运行作业的客户端通过调用getSplits()计算分片,然后将它们发送到jobtracker,jobtracker使用其存储位置信息来调度map任务从而在tasktracker上处理这些分片数据。一般默认分片大小就是块的大小,分片的大小由以下公式计算:
max(minimumSize,min(maximumSize,blockSize))
在默认情况下:minimumSize < blockSize < maximumSize
可以通过调整maximumSize和minimumSize来控制分片大小。

reducer的最优个数与集群中可用的reducer任务槽数有关,总槽数由集群中节点数与每个节点的任务槽数相乘得到。一个常用的方法是设置reducer的个数比总槽数稍微少一点,给reducer任务留点余地(容忍一些错误发生而不需要延长作业的运行时间),如果reduce任务很大,比较明智的做法是使用更多的reducer,使任务粒度更小,从而使任务失败不至于显著影响作业执行时间。

但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败。所以用户在提交map/reduce作业时应该在一个合理的范围内,这样既可以增强系统负载匀衡,也可以降低任务失败的开销。

reduce在运行时往往需要从相关map端复制数据到reduce节点来处理,因此相比于map任务。reduce节点资源是相对比较缺少的,同时相对运行较慢,正确的reduce任务的个数应该是0.95或者1.75 *(节点数 ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。同时需要注意增加reduce的数量虽然会增加系统的资源开销,但是可以改善负载匀衡,降低任务失败带来的负面影响。

mapreduce的输入输出格式

一个被指定为输入路径的目录,其内容不会被递归处理,事实上,这个目录只包含文件,如果包含子目录,也会被解释为文件,从而产生错误,处理的方法是:使用一个文件glob或一个过滤器根据命名模式限定选择目录下的文件;另一种方法是将mapred.input.dir.recursive设置为true从而强制对输入目录进行递归的读取。
FileInputFormat会使用一个默认的过滤器来排除隐藏文件,如果设置了过滤器,它会在默认过滤器的基础上进行过滤,即自定义过滤器只能看到非隐藏文件。

WholeFileInputFormat

将整个文件读为一条记录

NLineInputFormat

可以设置每个mapper收到的输入行数,一般来说,对少量输入行执行map任务是比较低效的(任务初始化的额外开销造成的)

MultipleInputs

输入多个数据源行格式不同的数据文件,可以指定不同的Mapper处理对应的文件

MultipleOutput

可以根据键值将数据写到多个文件

MapReduce的输入输出的更多相关文章

  1. MapReduce输入输出的处理流程及combiner

    MapReduce 的输入输出 MapReduce 框架运转在<key,value> 键值对上,也就是说,框架把作业的输入看成是一组<key,value>键值对,同样也产生一组 ...

  2. Hadoop学习笔记—4.初识MapReduce

    一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来 ...

  3. Hadoop阅读笔记(二)——利用MapReduce求平均数和去重

    前言:圣诞节来了,我怎么能虚度光阴呢?!依稀记得,那一年,大家互赠贺卡,短短几行字,字字融化在心里:那一年,大家在水果市场,寻找那些最能代表自己心意的苹果香蕉梨,摸着冰冷的水果外皮,内心早已滚烫.这一 ...

  4. 【hadoop】——MapReduce解压缩实现

    转载请注明出处:http://www.cnblogs.com/zhengrunjian/p/4527269.html 1作为输入 当压缩文件做为mapreduce的输入时,mapreduce将自动通过 ...

  5. hadoop-初学者写map-reduce程序中容易出现的问题 3

    1.写hadoop的map-reduce程序之前所必须知道的基础知识: 1)hadoop map-reduce的自带的数据类型: Hadoop提供了如下内容的数据类型,这些数据类型都实现了Writab ...

  6. 每天收获一点点------Hadoop之初始MapReduce

    一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来 ...

  7. 初识MapReduce

    MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难 ...

  8. [转]MapReduce浅析

    本文转自http://edisonchou.cnblogs.com/ 一.什么是MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大 ...

  9. 大数据学习笔记之Hadoop(三):MapReduce&YARN

    文章目录 一 MapReduce概念 1.1 为什么要MapReduce 1.2 MapReduce核心思想 1.3 MapReduce进程 1.4 MapReduce编程规范(八股文) 1.5 Ma ...

随机推荐

  1. Http-Only Cookie

    设置Cookie的时候,如果服务器加上了HttpOnly属性,则这个Cookie无法被JavaScript读取(即document.cookie不会返回这个Cookie的值),只用于向服务器发送. S ...

  2. TOSHIBA TEC EXT Printer Z-Mode

    Z-Mode functionality automatically converts the Zebra data stream into a TOSHIBA data stream (TPCL). ...

  3. ITPUB网站的知识索引汇总

    1. ITPUB知识索引树 http://www.itpub.net/tree/ http://www.itpub.net/pubtree/index.htm 2. ITPUB知识索引贴——全文索引 ...

  4. xxxxxxxxx

    异步for (var index = 0; index < data.length; index++) { var req = http.request(urlEntity, function( ...

  5. HDU 1402 fft 模板题

    题目就是求一个大数的乘法 这里数字的位数有50000的长度,按平时的乘法方式计算,每一位相乘是要n^2的复杂度的,这肯定不行 我们可以将每一位分解后作为系数,如153 = 1*x^2 + 5*x^1 ...

  6. Python排序算法

    不觉已经有半年没写了,时间真是容易荒废,这半年过了个春节,去拉萨旅行.本职工作也很忙,没有开展系统的学习和总结. 今年开始静下心来从基础开始学习,主要分为三部分,算法.线性代数.概率统计. 首先学习算 ...

  7. [UML][转]UML类图符号 各种关系说明以及举例

    修改自:http://www.cnblogs.com/duanxz/archive/2012/06/13/2547801.html UML中描述类和类之间相互关系的方式包括:依赖(Dependency ...

  8. Ubuntu操作系统安装使用教程 (转)

    随着微软的步步紧逼,包括早先的Windows黑屏计划.实施,逮捕番茄花园作者并判刑,种种迹象表明,中国用户免费使用盗版Windows的日子将不会太长久了,那么这个世界上有没有即免费又易用的操作系统呢? ...

  9. eclipse如何导入项目

    链接来自百度经验: 点击打开链接

  10. 黑马程序员——【Java基础】——泛型、Utilities工具类、其他对象API

    ---------- android培训.java培训.期待与您交流! ---------- 一.泛型 (一)泛型概述 1.泛型:JDK1.5版本以后出现的新特性,用于解决安全问题,是一个类型安全机制 ...