A. DZY Loves Physics
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

DZY loves Physics, and he enjoys calculating density.

Almost everything has density, even a graph. We define the density of a non-directed graph (nodes and edges of the graph have some values) as follows:


where v is the sum of the values of the nodes, e is
the sum of the values of the edges.

Once DZY got a graph G, now he wants to find a connected induced subgraph G' of
the graph, such that the density of G' is as large as possible.

An induced subgraph G'(V', E') of a graph G(V, E) is
a graph that satisfies:

  • ;
  • edge  if and only if , and edge ;
  • the value of an edge in G' is the same as the value of the corresponding edge in G,
    so as the value of a node.

Help DZY to find the induced subgraph with maximum density. Note that the induced subgraph you choose must be connected.

Input

The first line contains two space-separated integers n (1 ≤ n ≤ 500), . Integer n represents
the number of nodes of the graph Gm represents
the number of edges.

The second line contains n space-separated integers xi (1 ≤ xi ≤ 106),
where xi represents
the value of the i-th node. Consider the graph nodes are numbered from 1 to n.

Each of the next m lines contains three space-separated integers ai, bi, ci (1 ≤ ai < bi ≤ n; 1 ≤ ci ≤ 103),
denoting an edge between node ai and bi with
value ci. The
graph won't contain multiple edges.

Output

Output a real number denoting the answer, with an absolute or relative error of at most 10 - 9.

Sample test(s)
input
1 0
1
output
0.000000000000000
input
2 1
1 2
1 2 1
output
3.000000000000000
input
5 6
13 56 73 98 17
1 2 56
1 3 29
1 4 42
2 3 95
2 4 88
3 4 63
output
2.965517241379311
Note

In the first sample, you can only choose an empty subgraph, or the subgraph containing only node 1.

In the second sample, choosing the whole graph is optimal.

证明:必定存在一条边数≤1的最优解

如果存在最优解(G)ans最小边数>1,则点数>2

ans=∑vi/∑c

由如果知对G的子图,(u+v)/c<ans ,(u+v)<ans*c

∴∑u+∑v<ans*∑c ,(∑u+∑v)/∑c<ans=∑vi/∑c

∴(∑u+∑v)<∑vi 矛盾

结论成立

所以仅仅要推断全部的仅仅取1条边,和不取的情况 O(m)

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<iomanip>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (500+10)
#define MAXM (MAXN*MAXN)
#define MAXAi (1e6)
#define MAXCi (1e3)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
typedef long double ld;
int n,m,a[MAXN];
ld ans=0.0;
int main()
{
// freopen("Physics.in","r",stdin);
scanf("%d%d",&n,&m);
For(i,n) scanf("%d",&a[i]);
For(i,m)
{
int u,v;
double c;
scanf("%d%d%lf",&u,&v,&c);
ans=max(ans,(ld)(a[u]+a[v])/c);
}
cout<<setiosflags(ios::fixed)<<setprecision(100)<<ans; return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

CF 444A(DZY Loves Physics-低密度脂蛋白诱导子图)的更多相关文章

  1. Codeforces 444A DZY Loves Physics(图论)

    题目链接:Codeforces 444A DZY Loves Physics 题目大意:给出一张图,图中的每一个节点,每条边都有一个权值.如今有从中挑出一张子图,要求子图联通,而且被选中的随意两点.假 ...

  2. CF 444C DZY Loves Physics(图论结论题)

    题目链接: 传送门 DZY Loves Chemistry time limit per test1 second     memory limit per test256 megabytes Des ...

  3. @codeforces - 444A@ DZY Loves Physics

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的图,边有边权,点有点权. 找到一个连通 ...

  4. cf444A DZY Loves Physics

    A. DZY Loves Physics time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. Codeforces Round #254 (Div. 1) A. DZY Loves Physics 智力题

    A. DZY Loves Physics 题目连接: http://codeforces.com/contest/444/problem/A Description DZY loves Physics ...

  6. CodeForces 444C. DZY Loves Physics(枚举+水题)

    转载请注明出处:http://blog.csdn.net/u012860063/article/details/37509207 题目链接:http://codeforces.com/contest/ ...

  7. CF 445B DZY Loves Chemistry(并查集)

    题目链接: 传送门 DZY Loves Chemistry time limit per test:1 second     memory limit per test:256 megabytes D ...

  8. CF 444B(DZY Loves FFT-时间复杂度)

    B. DZY Loves FFT time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  9. Cf 444C DZY Loves Colors(段树)

    DZY loves colors, and he enjoys painting. On a colorful day, DZY gets a colorful ribbon, which consi ...

随机推荐

  1. poj 2723 Get Luffy Out(2-sat)

    Description Ratish is a young man who always dreams of being a hero. One day his friend Luffy was ca ...

  2. HTTP学习笔记

    最近在看HTTP权威指南, 然后准备从Python的request库入手,看它的源代码实现 http://cn.python-requests.org/zh_CN/latest/ 挖坑 今年准备在gi ...

  3. c++引擎开发

    MyMap.erase(Itor++); //在windows下也可以Itor = MyMap.erase(Itor),但是在linux下不行. 一个是把指针定为const .就是不能修改指针.也就是 ...

  4. visual studio 2010 C语言声明异常

    如下这段程序,是C_Primer_plus_第五版内的一个复习题答案(感觉声明i的值有问题),在GCC上面可以运行,但是移植到VS2010就一堆错误, #include<stdio.h> ...

  5. AlertDialog详解

    参考地址:http://blog.csdn.net/woaieillen/article/details/7378324 1.弹出提示框 new AlertDialog.Builder(LoginAc ...

  6. 如何改变word修订模型下的视图

    在Word中执行与Find.Range等相关的操作时,需对修订模式下的文档进行特殊处理. 核心知识点 Word中的 RevisionsView 属性只有两种设置:显示标记的最终状态(Final Sho ...

  7. C# 枚举运用"位"操作和"或"操作

    定义: /// <summary> /// The js function type(the same as name). /// </summary> [Flags] pub ...

  8. Javascript进阶篇——( JavaScript内置对象---上-Date,string,charAt,indexOf,split,substring,substr)笔记整理

    什么是对象JavaScript 中的所有事物都是对象,如:字符串.数值.数组.函数等,每个对象带有属性和方法.对象的属性:反映该对象某些特定的性质的,如:字符串的长度.图像的长宽等:对象的方法:能够在 ...

  9. zookeeper_01:zookeeper概述

    应对场景: 相对于开发在一台计算机上运行的单个程序,如何让一个应用中的多个独立的程序协同工作是一件非常困难的事情.开发这样的应用,很容易让很多开发人员陷入如何使多个程序协同工作的逻辑中,最后导致没有时 ...

  10. SharedPreferences基础

    见归档项目:SharedPreferencesDemo.zip 1.对于数据量较小,且有明显的K-V形式的数据而言,适合用SharedPreferences保存.SharedPreferences的数 ...