转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

Jack Straws
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3512   Accepted: 1601

Description

In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

这题还是比较简单的,就是问两条线段是否直接或者间接的相连。注意考虑好有一段是重叠的情况即可

 /**
* code generated by JHelper
* More info: https://github.com/AlexeyDmitriev/JHelper
* @author xyiyy @https://github.com/xyiyy
*/ #include <iostream>
#include <fstream> //#####################
//Author:fraud
//Blog: http://www.cnblogs.com/fraud/
//#####################
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <sstream>
#include <ios>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <list>
#include <queue>
#include <deque>
#include <stack>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <climits>
#include <cctype> using namespace std;
#define rep(X, N) for(int X=0;X<N;X++)
#define rep2(X, L, R) for(int X=L;X<=R;X++) const int MAXN = ;
//
// Created by xyiyy on 2015/8/8.
// #ifndef JHELPER_EXAMPLE_PROJECT_UNIONFINDSET_HPP
#define JHELPER_EXAMPLE_PROJECT_UNIONFINDSET_HPP int pa[MAXN], ra[MAXN]; void init(int n) {
rep(i, n + )pa[i] = i, ra[i] = ;
} int find(int x) {
if (pa[x] != x)pa[x] = find(pa[x]);
return pa[x];
} int unite(int x, int y) {
x = find(x);
y = find(y);
if (x == y)return ;
if (ra[x] < ra[y])pa[x] = y;
else {
pa[y] = x;
if (ra[x] == ra[y])ra[x]++;
}
return ;
} bool same(int x, int y) {
return find(x) == find(y);
} #endif //JHELPER_EXAMPLE_PROJECT_UNIONFINDSET_HPP //
// Created by xyiyy on 2015/8/10.
// #ifndef JHELPER_EXAMPLE_PROJECT_P_HPP
#define JHELPER_EXAMPLE_PROJECT_P_HPP const double EPS = 1e-; class P {
public:
double x, y; P() { } P(double _x, double _y) {
x = _x;
y = _y;
} double add(double a, double b) {
if (fabs(a + b) < EPS * (fabs(a) + fabs(b)))return ;
return a + b;
} P operator+(const P &p) {
return P(add(x, p.x), add(y, p.y));
} P operator-(const P &p) {
return P(add(x, -p.x), add(y, -p.y));
} P operator*(const double &d) {
return P(x * d, y * d);
} P operator/(const double &d) {
return P(x / d, y / d);
} double det(P p) {
return add(x * p.y, -y * p.x);
} //线段相交判定
bool crsSS(P p1, P p2, P q1, P q2) {
if (max(p1.x, p2.x) + EPS < min(q1.x, q2.x))return false;
if (max(q1.x, q2.x) + EPS < min(p1.x, p2.x))return false;
if (max(p1.y, p2.y) + EPS < min(q1.y, q2.y))return false;
if (max(q1.y, q2.y) + EPS < min(p1.y, p2.y))return false;
/*(if((p1 - p2).det(q1 - q2) == 0){
return (on_seg(p1,p2,q1) || on_seg(p1,p2,q2) || on_seg(q1,q2,p1) || on_seg(q1,q2,p2));
}else{
P r = intersection(p1,p2,q1,q2);
return on_seg(p1,p2,r) && on_seg(q1,q2,r); }*/
return (p2 - p1).det(q1 - p1) * (p2 - p1).det(q2 - p1) <=
&& (q2 - q1).det(p1 - q1) * (q2 - q1).det(p2 - q1) <= ;
} //直线和直线的交点
/*P isLL(P p1,P p2,P q1,P q2){
double d = (q2 - q1).det(p2 - p1);
if(sig(d)==0)return NULL;
return intersection(p1,p2,q1,q2);
}*/ //四点共圆判定
/*bool onC(P p1,P p2,P p3,P p4){
P c = CCenter(p1,p2,p3);
if(c == NULL) return false;
return add((c - p1).abs2(), -(c - p4).abs2()) == 0;
}*/ //三点共圆的圆心
/*P CCenter(P p1,P p2,P p3){
//if(disLP(p1, p2, p3) < EPS)return NULL;//三点共线
P q1 = (p1 + p2) * 0.5;
P q2 = q1 + ((p1 - p2).rot90());
P s1 = (p3 + p2) * 0.5;
P s2 = s1 + ((p3 - p2).rot90());
return isLL(q1,q2,s1,s2);
}*/ }; #endif //JHELPER_EXAMPLE_PROJECT_P_HPP class poj1127 {
public:
void solve(std::istream &in, std::ostream &out) {
int n;
P *p = new P[];
P *q = new P[];
while (in >> n && n) {
init(n + );
rep2(i, , n) {
in >> p[i].x >> p[i].y >> q[i].x >> q[i].y;
}
rep2(i, , n) {
rep2(j, , n) {
if (p[i].crsSS(p[i], q[i], p[j], q[j]))unite(i, j);
}
}
int u, v;
while (in >> u >> v && (u && v)) {
if (same(u, v))out << "CONNECTED" << endl;
else out << "NOT CONNECTED" << endl;
}
}
}
}; int main() {
std::ios::sync_with_stdio(false);
std::cin.tie();
poj1127 solver;
std::istream &in(std::cin);
std::ostream &out(std::cout);
solver.solve(in, out);
return ;
}

代码君

poj1127 Jack Straws(线段相交+并查集)的更多相关文章

  1. TZOJ 1840 Jack Straws(线段相交+并查集)

    描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...

  2. [poj 1127]Jack Straws[线段相交][并查集]

    题意: 给出一系列线段,判断某两个线段是否连通. 思路: 根据线段相交情况建立并查集, 在同一并查集中则连通. (第一反应是强连通分量...实际上只要判断共存即可, 具体的方向啊是没有关系的..) 并 ...

  3. TTTTTTTTTTTTTT poj 1127 Jack Straws 线段相交+并查集

    题意: 有n个木棍,给出木棍的两个端点的x,y坐标,判断其中某两个线段是否连通(可通过其他线段连通) #include <iostream> #include <cstdio> ...

  4. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  5. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

  6. TOJ1840: Jack Straws 判断两线段相交+并查集

    1840: Jack Straws  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 1 ...

  7. hdu 1558 线段相交+并查集

    题意:要求相交的线段都要塞进同一个集合里 sol:并查集+判断线段相交即可.n很小所以n^2就可以水过 #include <iostream> #include <cmath> ...

  8. 判断线段相交(hdu1558 Segment set 线段相交+并查集)

    先说一下题目大意:给定一些线段,这些线段顺序编号,这时候如果两条线段相交,则把他们加入到一个集合中,问给定一个线段序号,求在此集合中有多少条线段. 这个题的难度在于怎么判断线段相交,判断玩相交之后就是 ...

  9. hdu 1558 (线段相交+并查集) Segment set

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1558 题意是在坐标系中,当输入P(注意是大写,我当开始就wa成了小写)的时候输入一条线段的起点坐标和终点坐 ...

随机推荐

  1. Delphi XE7下 Intraweb 发布为ASP.NET应用程序

    一.XE7下Intraweb开发这里就不说了,重点是在开发Intraweb时与ISAPI不同之处要选择 IW library,编译成DLL文件. 二.网站的配置 1.这是站点的物理路径,c:\site ...

  2. .NET MVC 插件化框架支持原生MVC的Area和路由特性

    前面开放的源码只是简单的Plugin的实现,支持了插件的热插拔,最近晚上偶然想到,原生的MVC提供Areas和RouteAtrribute等路由特性标签,按照先前的做法,无法解析插件的路由特性和Are ...

  3. Unity3D 经验记录

    1.using UnityEngine.SceneManagement; 当在01场景调用02场景时,再载入回01场景时,代码保存的变量不会初始化,预制物体脚本内的变量会初始化. 2.当子物体太多时, ...

  4. 转:VC中WORD,DWORD,unsigned long,unsigned short的区别(转)

    typedef unsigned long       DWORD;typedef int                 BOOL;typedef unsigned char       BYTE; ...

  5. 转:fopen与open可以转换吗

    绝对不可以.fopen是C运行库级别的函数,而open是system call的wrapper routine.fopen返回FILE *的指针,这个结构本身维护着一些关于这个文件的信息,而open返 ...

  6. 用存储过程生成订单号ID

    DECLARE @sonumber BIGINTSELECT @sonumber=CONVERT(BIGINT, @serverId + Substring(CONVERT(VARCHAR(4), D ...

  7. 警惕P2B模式

    大家都知道P2P是什么,估计也有很多人了解P2B的意思,这里也不多做解释,但是为什么要警惕P2B,这里我要做详细说明,希望能给大家一个参考.      首先我们要把P2B分成两种,一种是针对大型企业, ...

  8. bzoj1827 [Sdoi2010]星际竞速

    Description 10 年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一. 赛车大赛的赛场由 N 颗行星和 ...

  9. 苹果推送APNS总结 (

    开发状态服务器地址 gateway.sandbox.push.apple.com 2195产品状态服务器地址 gateway.push.apple.com         2195 Developme ...

  10. JAVA基础1

    阶段0:拟出一个计划 阶段1:要制作什么? 阶段2:如何构建? 阶段3:开始创建 阶段4:校订 阶段5:计划的回报   一.程序运行时,数据保存位置 1.寄存器.这是最快的保存区域,因为它位于和其他所 ...