[uva11916] Emoogle Grid (离散对数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud
Emoogle Grid |
You have to color an MxN ( 1M, N
108) two dimensional grid. You will be provided K ( 2
K
108) different colors to do so. You will also be provided a list of B ( 0
B
500) list of blocked cells of this grid. You cannot color those blocked cells. A cell can be described as (x, y), which points to the y-th cell from the left of the x-th row from the top.
While coloring the grid, you have to follow these rules -
- You have to color each cell which is not blocked.
- You cannot color a blocked cell.
- You can choose exactly one color from K given colors to color a cell.
- No two vertically adjacent cells can have the same color, i.e. cell (x, y) and cell (x + 1, y) cannot contain the same color.

Now the great problem setter smiled with emotion and thought that he would ask the contestants to find how many ways the board can be colored. Since the number can be very large and he doesn't want the contestants to be in trouble dealing with big integers; he decided to ask them to find the result modulo 100,000,007. So he prepared the judge data for the problem using a random generator and saved this problem for a future contest as a giveaway (easiest) problem.
But unfortunately he got married and forgot the problem completely. After some days he rediscovered his problem and became very excited. But after a while, he saw that, in the judge data, he forgot to add the integer which supposed to be the `number of rows'. He didn't find the input generator and his codes, but luckily he has the input file and the correct answer file. So, he asks your help to regenerate the data. Yes, you are given the input file which contains all the information except the `number of rows' and the answer file; you have to find the number of rows he might have used for this problem.
Input
Input starts with an integer T ( T150), denoting the number of test cases.
Each test case starts with a line containing four integers N, K, B and R ( 0R < 100000007) which denotes the result for this case. Each of the next B lines will contains two integers x and y ( 1
x
M, 1
y
N), denoting the row and column number of a blocked cell. All the cells will be distinct.
Output
For each case, print the case number and the minimum possible value of M. You can assume that solution exists for each case.
Sample Input
4
3 3 0 1728
4 4 2 186624
3 1
3 3
2 5 2 20
1 2
2 2
2 3 0 989323
Sample Output
Case 1: 3
Case 2: 3
Case 3: 2
Case 4: 20
题意:有M行N列的网格,给其涂上K中颜色,其中有B个已知位置的格子不能涂颜色,要求上下两个相邻的格子的颜色不能相同,问在方案数mod100,000,007=R的情况下,M为多少?(保证已知位置的格子一定在M行N列内)保证M有解
分析:所有在第一行或者其上方的格子为不可涂时的格子的涂色方案数为K,其余点的涂色方案数为K-1.
设所有已知位置的格子的行的最大值为x,记在前x-1行内不可涂色的格子相邻的下方的可涂色格子的数目为a,不可涂色的格子中位于第一行的格子的数目为b,则最终可涂K种颜色的格子的数目为a+N-b,只能涂K-1中颜色的格子的数目为x*N-(a+N-b);则求x行的涂色方案为temp=K^(a+N-b)*(K-1)^(x*N-(a+N-b)),若temp=R,则temp即为答案
再考虑第x+1行的情况,若第x行为不可涂色的格子,则这一行的其下方相邻的格子的涂色方案为K,否则为K-1,记可涂K-1种的数目为c,则temp=temp*K^c*(K-1)^(N-c),若temp=R,则temp即为答案
则接下来的每行的新的涂色方案数都为cnt=(K-1)^N,即接下来求cnt^ans*temp=R(mod100,000,007)
cntans=temp-1*R(mod100,000,007)
然后求一下离散对数即可
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <set>
#define X first
#define Y second
#include <map>
using namespace std; typedef pair<int,int> PII;
typedef long long ll;
ll n,k,b,r;
set<PII> s;
PII p[];
ll maxx=;
const int mod=;
ll mul_mod(ll x,ll y)
{
return (ll)x*y%mod;
}
ll fast_mod(int m,ll t)
{
ll temp=(long long)m;
ll ret=1LL;
while(t)
{
if(t&)ret=mul_mod(ret,temp);
temp=mul_mod(temp,temp);
t/=;
}
return ret;
}
ll ext_gcd(ll a,ll t,ll &d,ll &x,ll &y)
{
if(!t){d=a;x=;y=;}
else {
ext_gcd(t,a%t,d,y,x);y-=x*(a/t);
}
}
ll inv(ll a)
{
ll d,x,y;
ext_gcd(a,mod,d,x,y);
return d == ? (x%mod+mod)%mod : -;
}
ll log_mod(ll a,ll b)
{
ll m,v,e=,i;
m=(ll)sqrt(mod+0.5);
v=inv(fast_mod(a,m));
map<ll ,ll >x;
x.clear();
x[]=;
for(i=;i<m;i++)
{
e=mul_mod(e,a);
if(!x.count(e))x[e]=i;
}
for(i=;i<m;i++)
{
if(x.count(b))return i*m+x[b];
b=mul_mod(b,v);
}
return -;
}
ll solve()
{
int temp=;
for(int i=;i<b;i++)
if(p[i].X!=maxx&&!s.count(make_pair(p[i].X+,p[i].Y)))temp++;
temp+=n;
for(int i=;i<b;i++)
if(p[i].X==)temp--;
ll ret=mul_mod(fast_mod(k,temp),fast_mod(k-,(long long)maxx*n-b-temp));
if(ret==r)return maxx;
temp=;
for(int i=;i<b;i++)if(p[i].X==maxx)temp++;
maxx++;
ret=mul_mod(ret,fast_mod(k,temp));
ret=mul_mod(ret,fast_mod(k-,n-temp));
if(ret==r)return maxx;
//求(ret*((k-1)^n)^x)%mod=r
//即((k-1)^n)^x=r*(ret^(-1))%mod
return log_mod(fast_mod(k-,n),mul_mod(r,inv(ret)))+maxx;
} int main()
{
ios::sync_with_stdio(false);
int t;
//freopen("in.in","r",stdin);
cin>>t;
int cas=;
while(t--)
{
maxx=;
s.clear();
cin>>n>>k>>b>>r;
for(int i=;i<b;i++)
{
cin>>p[i].X>>p[i].Y;
if(p[i].X>maxx)maxx=p[i].X;
s.insert(p[i]);
}
cout<<"Case "<<cas++<<": "<<solve()<<endl;
}
return ;
}
代码君
[uva11916] Emoogle Grid (离散对数)的更多相关文章
- UVA11916 Emoogle Grid
Emoogle Grid You have to color an M × N (1 ≤ M, N ≤ 108 ) two dimensional grid. You will be provided ...
- UVA 11916 Emoogle Grid 离散对数 大步小步算法
LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <mat ...
- uva11916 Emoogle Grid (BSGS)
https://uva.onlinejudge.org/external/119/p11916.pdf 令m表示不能染色的格子的最大行号 设>m行时可以染k种颜色的格子数有ck个,恰好有m行时可 ...
- UVa 11916 (离散对数) Emoogle Grid
因为题目要求同列相邻两格不同色,所以列与列之间不影响,可以逐列染色. 如果一个格子的上面相邻的格子,已经被染色则染这个格子的时候,共有k-1中选择. 反过来,如果一个格子位于第一列,或者上面相邻的格子 ...
- UVA - 11916 Emoogle Grid (组合计数+离散对数)
假如有这样一道题目:要给一个M行N列的网格涂上K种颜色,其中有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个相邻格子不能涂相同颜色.给出M,N,K和B个格子的位置,求出涂色方案总数除以1 ...
- UVA 11916 Emoogle Grid(同余模)
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 11916 Emoogle Grid
题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足 ...
- Uva_11916 Emoogle Grid
题目链接 题意: 有个N X M的棋盘, 有K种颜色, 有B个不可涂色的位置, 共有R种涂色方案. 1)每个可涂色的位置必须涂上一种颜色 2)不可涂色位置不能涂色 3)每个位置必须从K种颜色中选出一种 ...
- uva 11916 Emoogle Grid (BSGS)
UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #i ...
随机推荐
- linux查看压缩包的文件列表
网上看到了一篇文章: Using bzip2 with less 这篇文章介绍了一个脚本,脚本功能就是列出压缩包所压缩的文件,本文算是原文搬运,不过减少点东西以适用我日常系统运用. #!/bin/ba ...
- l连接远程桌面
参考:http://www.windows7en.com/Win7/17168.html 重要命令:mstsc
- 【android】android中activity的启动模式
在AndroidManifest.xml中配置 <activity android:label="第二个应用" android:name=".Demo2Activi ...
- DNF(一.YUM已死,DNF代之)
Yum还没学好呢,突然听到已经要被抛弃了.恐慌至极.. 在最新版的Fedora 22 抛弃了Yum包管理器,取而代之的是DNF.. 那么搜搜 Fedora 22 Release Note.. 官方给出 ...
- js中constructor的作用
在学习过程中对js的constructor的作用产生了疑问.下面是学习的资料进行梳理 function Person(area){ this.type = 'person'; this.area = ...
- 更改AngularJS的语法解析符号
// 更改AngularJS的语法解析符号 app.config(function ($interpolateProvider) { $interpolateProvider.startSymbol( ...
- 鼠标点击变色 lvha
a标签有四个"状态"的先后过程是:a:link ->a:hover ->a:active ->a:visited.另外,a:active不能设置有无下划线(总是有 ...
- python 反向查找
python 字符串反向查找大部分在正向查找前面加入r eg: str.rfind('str') str.rsplit(',')
- HttpAsyncClient 的简单使用
下载地址:http://hc.apache.org/downloads.cgi 在NetBeans中导入以下jar文件: 1:一次请求: public static void oneReuest(){ ...
- LeetCode_Path Sum II
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...