[uva11916] Emoogle Grid (离散对数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud
| Emoogle Grid |
You have to color an MxN ( 1
M, N
108) two dimensional grid. You will be provided K ( 2
K
108) different colors to do so. You will also be provided a list of B ( 0
B
500) list of blocked cells of this grid. You cannot color those blocked cells. A cell can be described as (x, y), which points to the y-th cell from the left of the x-th row from the top.
While coloring the grid, you have to follow these rules -
- You have to color each cell which is not blocked.
- You cannot color a blocked cell.
- You can choose exactly one color from K given colors to color a cell.
- No two vertically adjacent cells can have the same color, i.e. cell (x, y) and cell (x + 1, y) cannot contain the same color.

Now the great problem setter smiled with emotion and thought that he would ask the contestants to find how many ways the board can be colored. Since the number can be very large and he doesn't want the contestants to be in trouble dealing with big integers; he decided to ask them to find the result modulo 100,000,007. So he prepared the judge data for the problem using a random generator and saved this problem for a future contest as a giveaway (easiest) problem.
But unfortunately he got married and forgot the problem completely. After some days he rediscovered his problem and became very excited. But after a while, he saw that, in the judge data, he forgot to add the integer which supposed to be the `number of rows'. He didn't find the input generator and his codes, but luckily he has the input file and the correct answer file. So, he asks your help to regenerate the data. Yes, you are given the input file which contains all the information except the `number of rows' and the answer file; you have to find the number of rows he might have used for this problem.
Input
Input starts with an integer T ( T
150), denoting the number of test cases.
Each test case starts with a line containing four integers N, K, B and R ( 0
R < 100000007) which denotes the result for this case. Each of the next B lines will contains two integers x and y ( 1
x
M, 1
y
N), denoting the row and column number of a blocked cell. All the cells will be distinct.
Output
For each case, print the case number and the minimum possible value of M. You can assume that solution exists for each case.
Sample Input
4
3 3 0 1728
4 4 2 186624
3 1
3 3
2 5 2 20
1 2
2 2
2 3 0 989323
Sample Output
Case 1: 3
Case 2: 3
Case 3: 2
Case 4: 20
题意:有M行N列的网格,给其涂上K中颜色,其中有B个已知位置的格子不能涂颜色,要求上下两个相邻的格子的颜色不能相同,问在方案数mod100,000,007=R的情况下,M为多少?(保证已知位置的格子一定在M行N列内)保证M有解
分析:所有在第一行或者其上方的格子为不可涂时的格子的涂色方案数为K,其余点的涂色方案数为K-1.
设所有已知位置的格子的行的最大值为x,记在前x-1行内不可涂色的格子相邻的下方的可涂色格子的数目为a,不可涂色的格子中位于第一行的格子的数目为b,则最终可涂K种颜色的格子的数目为a+N-b,只能涂K-1中颜色的格子的数目为x*N-(a+N-b);则求x行的涂色方案为temp=K^(a+N-b)*(K-1)^(x*N-(a+N-b)),若temp=R,则temp即为答案
再考虑第x+1行的情况,若第x行为不可涂色的格子,则这一行的其下方相邻的格子的涂色方案为K,否则为K-1,记可涂K-1种的数目为c,则temp=temp*K^c*(K-1)^(N-c),若temp=R,则temp即为答案
则接下来的每行的新的涂色方案数都为cnt=(K-1)^N,即接下来求cnt^ans*temp=R(mod100,000,007)
cntans=temp-1*R(mod100,000,007)
然后求一下离散对数即可
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <set>
#define X first
#define Y second
#include <map>
using namespace std; typedef pair<int,int> PII;
typedef long long ll;
ll n,k,b,r;
set<PII> s;
PII p[];
ll maxx=;
const int mod=;
ll mul_mod(ll x,ll y)
{
return (ll)x*y%mod;
}
ll fast_mod(int m,ll t)
{
ll temp=(long long)m;
ll ret=1LL;
while(t)
{
if(t&)ret=mul_mod(ret,temp);
temp=mul_mod(temp,temp);
t/=;
}
return ret;
}
ll ext_gcd(ll a,ll t,ll &d,ll &x,ll &y)
{
if(!t){d=a;x=;y=;}
else {
ext_gcd(t,a%t,d,y,x);y-=x*(a/t);
}
}
ll inv(ll a)
{
ll d,x,y;
ext_gcd(a,mod,d,x,y);
return d == ? (x%mod+mod)%mod : -;
}
ll log_mod(ll a,ll b)
{
ll m,v,e=,i;
m=(ll)sqrt(mod+0.5);
v=inv(fast_mod(a,m));
map<ll ,ll >x;
x.clear();
x[]=;
for(i=;i<m;i++)
{
e=mul_mod(e,a);
if(!x.count(e))x[e]=i;
}
for(i=;i<m;i++)
{
if(x.count(b))return i*m+x[b];
b=mul_mod(b,v);
}
return -;
}
ll solve()
{
int temp=;
for(int i=;i<b;i++)
if(p[i].X!=maxx&&!s.count(make_pair(p[i].X+,p[i].Y)))temp++;
temp+=n;
for(int i=;i<b;i++)
if(p[i].X==)temp--;
ll ret=mul_mod(fast_mod(k,temp),fast_mod(k-,(long long)maxx*n-b-temp));
if(ret==r)return maxx;
temp=;
for(int i=;i<b;i++)if(p[i].X==maxx)temp++;
maxx++;
ret=mul_mod(ret,fast_mod(k,temp));
ret=mul_mod(ret,fast_mod(k-,n-temp));
if(ret==r)return maxx;
//求(ret*((k-1)^n)^x)%mod=r
//即((k-1)^n)^x=r*(ret^(-1))%mod
return log_mod(fast_mod(k-,n),mul_mod(r,inv(ret)))+maxx;
} int main()
{
ios::sync_with_stdio(false);
int t;
//freopen("in.in","r",stdin);
cin>>t;
int cas=;
while(t--)
{
maxx=;
s.clear();
cin>>n>>k>>b>>r;
for(int i=;i<b;i++)
{
cin>>p[i].X>>p[i].Y;
if(p[i].X>maxx)maxx=p[i].X;
s.insert(p[i]);
}
cout<<"Case "<<cas++<<": "<<solve()<<endl;
}
return ;
}
代码君
[uva11916] Emoogle Grid (离散对数)的更多相关文章
- UVA11916 Emoogle Grid
Emoogle Grid You have to color an M × N (1 ≤ M, N ≤ 108 ) two dimensional grid. You will be provided ...
- UVA 11916 Emoogle Grid 离散对数 大步小步算法
LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <mat ...
- uva11916 Emoogle Grid (BSGS)
https://uva.onlinejudge.org/external/119/p11916.pdf 令m表示不能染色的格子的最大行号 设>m行时可以染k种颜色的格子数有ck个,恰好有m行时可 ...
- UVa 11916 (离散对数) Emoogle Grid
因为题目要求同列相邻两格不同色,所以列与列之间不影响,可以逐列染色. 如果一个格子的上面相邻的格子,已经被染色则染这个格子的时候,共有k-1中选择. 反过来,如果一个格子位于第一列,或者上面相邻的格子 ...
- UVA - 11916 Emoogle Grid (组合计数+离散对数)
假如有这样一道题目:要给一个M行N列的网格涂上K种颜色,其中有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个相邻格子不能涂相同颜色.给出M,N,K和B个格子的位置,求出涂色方案总数除以1 ...
- UVA 11916 Emoogle Grid(同余模)
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 11916 Emoogle Grid
题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足 ...
- Uva_11916 Emoogle Grid
题目链接 题意: 有个N X M的棋盘, 有K种颜色, 有B个不可涂色的位置, 共有R种涂色方案. 1)每个可涂色的位置必须涂上一种颜色 2)不可涂色位置不能涂色 3)每个位置必须从K种颜色中选出一种 ...
- uva 11916 Emoogle Grid (BSGS)
UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #i ...
随机推荐
- hdu 5671 矩阵变换
Matrix Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Su ...
- Session与Cookie间不得不说的一些事
在很久很久以前,刚有浏览器和网页的时候,web开发者发现了一个问题,我必须要在客户端这边保存一些东西才能实现某些功能,比如大家喜闻乐见的购物车.用户登录.自动登陆等.但是客户端只有一个浏览器,怎么在用 ...
- Hadoop集群日常运维
(一)备份namenode的元数据 namenode中的元数据非常重要,如丢失或者损坏,则整个系统无法使用.因此应该经常对元数据进行备份,最好是异地备份. 1.将元数据复制到远程站点 (1)以下代码将 ...
- Kendo Web UI Grid数据绑定,删除,编辑,并把默认英文改成中文
Kendo Web UI 是个不错的Jquery框.可惜老外写的,很多都是默认的英文,当然我们也可以设置成中文,接下来,我们就看看Grid是如何实现的数据绑定(Kendo Grid数据绑定实现有很多方 ...
- openFileDialog与saveFileDialog的使用
private void btnOpen_Click(object sender, EventArgs e) { if (openFileDialog1.ShowDialog() == DialogR ...
- SALT-API兼HALITE测试搞定
妈XX,真的搞了近一周的空闲时间. 最后才领悟. 其实,先按HALITE的套路弄好,然后直接SALT-API就OK了..因为HALITE就是SALT-API的封闭和替代嘛. 随便参考一个URL搞定HA ...
- Visual studio 使用正则表达查找替换
原文 http://www.cnblogs.com/shineqiujuan/archive/2012/07/04/2575535.html 正则表达式是查找和替换文本模式的一种简洁而灵活的表示法. ...
- UML--核心元素之分析类
分析类包括边界类.控制类和实体类. 边界类是一种用于对系统外部环境与其内部运作之间的交互进行建模的类. myself:就像建模时,不是所有的属性都要建模一样.不是所有的方法都要建模一样.学习也是如此, ...
- linux下awk命令详解
简介 awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再 ...
- SOCKET 实现NAT 穿越
在当前IPv4NAT盛行的网络环境下,两个用户要直接进行P2P连接是非常困难的.较好的解决办法是借助含公网的用户或是服务器中介实现P2P连接. NAT:Network Address Translat ...