[uva11916] Emoogle Grid (离散对数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud
| Emoogle Grid |
You have to color an MxN ( 1
M, N
108) two dimensional grid. You will be provided K ( 2
K
108) different colors to do so. You will also be provided a list of B ( 0
B
500) list of blocked cells of this grid. You cannot color those blocked cells. A cell can be described as (x, y), which points to the y-th cell from the left of the x-th row from the top.
While coloring the grid, you have to follow these rules -
- You have to color each cell which is not blocked.
- You cannot color a blocked cell.
- You can choose exactly one color from K given colors to color a cell.
- No two vertically adjacent cells can have the same color, i.e. cell (x, y) and cell (x + 1, y) cannot contain the same color.

Now the great problem setter smiled with emotion and thought that he would ask the contestants to find how many ways the board can be colored. Since the number can be very large and he doesn't want the contestants to be in trouble dealing with big integers; he decided to ask them to find the result modulo 100,000,007. So he prepared the judge data for the problem using a random generator and saved this problem for a future contest as a giveaway (easiest) problem.
But unfortunately he got married and forgot the problem completely. After some days he rediscovered his problem and became very excited. But after a while, he saw that, in the judge data, he forgot to add the integer which supposed to be the `number of rows'. He didn't find the input generator and his codes, but luckily he has the input file and the correct answer file. So, he asks your help to regenerate the data. Yes, you are given the input file which contains all the information except the `number of rows' and the answer file; you have to find the number of rows he might have used for this problem.
Input
Input starts with an integer T ( T
150), denoting the number of test cases.
Each test case starts with a line containing four integers N, K, B and R ( 0
R < 100000007) which denotes the result for this case. Each of the next B lines will contains two integers x and y ( 1
x
M, 1
y
N), denoting the row and column number of a blocked cell. All the cells will be distinct.
Output
For each case, print the case number and the minimum possible value of M. You can assume that solution exists for each case.
Sample Input
4
3 3 0 1728
4 4 2 186624
3 1
3 3
2 5 2 20
1 2
2 2
2 3 0 989323
Sample Output
Case 1: 3
Case 2: 3
Case 3: 2
Case 4: 20
题意:有M行N列的网格,给其涂上K中颜色,其中有B个已知位置的格子不能涂颜色,要求上下两个相邻的格子的颜色不能相同,问在方案数mod100,000,007=R的情况下,M为多少?(保证已知位置的格子一定在M行N列内)保证M有解
分析:所有在第一行或者其上方的格子为不可涂时的格子的涂色方案数为K,其余点的涂色方案数为K-1.
设所有已知位置的格子的行的最大值为x,记在前x-1行内不可涂色的格子相邻的下方的可涂色格子的数目为a,不可涂色的格子中位于第一行的格子的数目为b,则最终可涂K种颜色的格子的数目为a+N-b,只能涂K-1中颜色的格子的数目为x*N-(a+N-b);则求x行的涂色方案为temp=K^(a+N-b)*(K-1)^(x*N-(a+N-b)),若temp=R,则temp即为答案
再考虑第x+1行的情况,若第x行为不可涂色的格子,则这一行的其下方相邻的格子的涂色方案为K,否则为K-1,记可涂K-1种的数目为c,则temp=temp*K^c*(K-1)^(N-c),若temp=R,则temp即为答案
则接下来的每行的新的涂色方案数都为cnt=(K-1)^N,即接下来求cnt^ans*temp=R(mod100,000,007)
cntans=temp-1*R(mod100,000,007)
然后求一下离散对数即可
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <set>
#define X first
#define Y second
#include <map>
using namespace std; typedef pair<int,int> PII;
typedef long long ll;
ll n,k,b,r;
set<PII> s;
PII p[];
ll maxx=;
const int mod=;
ll mul_mod(ll x,ll y)
{
return (ll)x*y%mod;
}
ll fast_mod(int m,ll t)
{
ll temp=(long long)m;
ll ret=1LL;
while(t)
{
if(t&)ret=mul_mod(ret,temp);
temp=mul_mod(temp,temp);
t/=;
}
return ret;
}
ll ext_gcd(ll a,ll t,ll &d,ll &x,ll &y)
{
if(!t){d=a;x=;y=;}
else {
ext_gcd(t,a%t,d,y,x);y-=x*(a/t);
}
}
ll inv(ll a)
{
ll d,x,y;
ext_gcd(a,mod,d,x,y);
return d == ? (x%mod+mod)%mod : -;
}
ll log_mod(ll a,ll b)
{
ll m,v,e=,i;
m=(ll)sqrt(mod+0.5);
v=inv(fast_mod(a,m));
map<ll ,ll >x;
x.clear();
x[]=;
for(i=;i<m;i++)
{
e=mul_mod(e,a);
if(!x.count(e))x[e]=i;
}
for(i=;i<m;i++)
{
if(x.count(b))return i*m+x[b];
b=mul_mod(b,v);
}
return -;
}
ll solve()
{
int temp=;
for(int i=;i<b;i++)
if(p[i].X!=maxx&&!s.count(make_pair(p[i].X+,p[i].Y)))temp++;
temp+=n;
for(int i=;i<b;i++)
if(p[i].X==)temp--;
ll ret=mul_mod(fast_mod(k,temp),fast_mod(k-,(long long)maxx*n-b-temp));
if(ret==r)return maxx;
temp=;
for(int i=;i<b;i++)if(p[i].X==maxx)temp++;
maxx++;
ret=mul_mod(ret,fast_mod(k,temp));
ret=mul_mod(ret,fast_mod(k-,n-temp));
if(ret==r)return maxx;
//求(ret*((k-1)^n)^x)%mod=r
//即((k-1)^n)^x=r*(ret^(-1))%mod
return log_mod(fast_mod(k-,n),mul_mod(r,inv(ret)))+maxx;
} int main()
{
ios::sync_with_stdio(false);
int t;
//freopen("in.in","r",stdin);
cin>>t;
int cas=;
while(t--)
{
maxx=;
s.clear();
cin>>n>>k>>b>>r;
for(int i=;i<b;i++)
{
cin>>p[i].X>>p[i].Y;
if(p[i].X>maxx)maxx=p[i].X;
s.insert(p[i]);
}
cout<<"Case "<<cas++<<": "<<solve()<<endl;
}
return ;
}
代码君
[uva11916] Emoogle Grid (离散对数)的更多相关文章
- UVA11916 Emoogle Grid
Emoogle Grid You have to color an M × N (1 ≤ M, N ≤ 108 ) two dimensional grid. You will be provided ...
- UVA 11916 Emoogle Grid 离散对数 大步小步算法
LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <mat ...
- uva11916 Emoogle Grid (BSGS)
https://uva.onlinejudge.org/external/119/p11916.pdf 令m表示不能染色的格子的最大行号 设>m行时可以染k种颜色的格子数有ck个,恰好有m行时可 ...
- UVa 11916 (离散对数) Emoogle Grid
因为题目要求同列相邻两格不同色,所以列与列之间不影响,可以逐列染色. 如果一个格子的上面相邻的格子,已经被染色则染这个格子的时候,共有k-1中选择. 反过来,如果一个格子位于第一列,或者上面相邻的格子 ...
- UVA - 11916 Emoogle Grid (组合计数+离散对数)
假如有这样一道题目:要给一个M行N列的网格涂上K种颜色,其中有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个相邻格子不能涂相同颜色.给出M,N,K和B个格子的位置,求出涂色方案总数除以1 ...
- UVA 11916 Emoogle Grid(同余模)
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 11916 Emoogle Grid
题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足 ...
- Uva_11916 Emoogle Grid
题目链接 题意: 有个N X M的棋盘, 有K种颜色, 有B个不可涂色的位置, 共有R种涂色方案. 1)每个可涂色的位置必须涂上一种颜色 2)不可涂色位置不能涂色 3)每个位置必须从K种颜色中选出一种 ...
- uva 11916 Emoogle Grid (BSGS)
UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #i ...
随机推荐
- C#窗体嵌套
1.思路:在一个面板上显示或者隐藏不同窗体 private void button1_Click(object sender, EventArgs e) { chuangti at = new chu ...
- [总结]Map: C++ V.S. Java
整理一下Map在Java 和 C++的基本操作,欢迎大家一起交流学习. 附: 对于在C++中,选用map 还是 unordered_map,可以参考这篇讨论.相对简单粗暴的结论是,unordered_ ...
- Mahout快速入门教程
Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现.分类.聚类等.Mahout最大的优点就是基于hadoop实现,把很多以前运行于单 ...
- 浅析Javascript原型继承(转)
引自: http://blog.csdn.net/kittyjie/article/details/4380918 原作者解释的浅显易懂,非常不错的JavaScript prototype总结 JS没 ...
- Asp.net mvc 3 file uploads using the fileapi
Asp.net mvc 3 file uploads using the fileapi I was recently given the task of adding upload progress ...
- Effective Java2读书笔记-对于所有对象都通用的方法(一)
第8条:覆盖equals时请遵守通用约定 ①约定的内容 自反性.对于任何非null的引用值x.x.equals(x)必须返回true. 对称性.对于任何非null的引用值x和y.当且仅当y.equal ...
- Cocos2d-x程序Windows下VC中文乱码的解决(用MultiByteToWideChar进行转换,VC2010有非常厉害的execution_character_set)
Cocos2d-x默认字符串常量编码都是UTF8的,而Windows中的VC默认都是跟系统相同,比如简体Windows是GB2312或者GBK.繁体就是BIG5编码.而我们大多数中国人用VC编译出来的 ...
- Android实现Live Photos 加源代码
在Android手机上实现类似于iphone中的LivePhoto的功能 源代码分享 github:https://github.com/amazingyyc/DeepRed 代码说明: 1.改变视频 ...
- hdu 4336 Card Collector(期望 dp 状态压缩)
Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...
- 一个sql很多个not like的简化语句
如: select * from table where `zongbu` not like '%北京%' and `zongbu` not like '%上海%' and `zongbu` not ...