11427 - Expect the Expected

Some mathematical background. This problem asks you to compute the expected value of a random
variable. If you haven’t seen those before, the simple definitions are as follows. A random variable is a
variable that can have one of several values, each with a certain probability. The probabilities of each
possible value are positive and add up to one. The expected value of a random variable is simply the
sum of all its possible values, each multiplied by the corresponding probability. (There are some more
complicated, more general definitions, but you won’t need them now.) For example, the value of a fair,
6-sided die is a random variable that has 6 possible values (from 1 to 6), each with a probability of 1/6.
Its expected value is 1/6 + 2/6 + . . . + 6/6 = 3.5. Now the problem.
I like to play solitaire. Each time I play a game, I have probability p of solving it and probability
(1 − p) of failing. The game keeps statistics of all my games – what percentage of games I have won.
If I simply keep playing for a long time, this percentage will always hover somewhere around p ∗ 100%.
But I want more.
Here is my plan. Every day, I will play a game of solitaire. If I win, I’ll go to sleep happy until
the next day. If I lose, I’ll keep playing until the fraction of games I have won today becomes larger
than p. At this point, I’ll declare victory and go to sleep. As you can see, at the end of each day, I’m
guaranteed to always keep my statistics above the expected p ∗ 100%. I will have beaten mathematics!
If your intuition is telling you that something here must break, then you are right. I can’t keep
doing this forever because there is a limit on the number of games I can play in one day. Let’s say that
I can play at most n games in one day. How many days can I expect to be able to continue with my
clever plan before it fails? Note that the answer is always at least 1 because it takes me a whole day
of playing to reach a failure.
Input
The first line of input gives the number of cases, N. N test cases follow. Each one is a line containing
p (as a fraction) and n.
1 ≤ N ≤ 3000, 0 ≤ p < 1,
The denominator of p will be at most 1000,
1 ≤ n ≤ 100.
Output
For each test case, print a line of the form ‘Case #x: y’, where y is the expected number of days,
rounded down to the nearest integer. The answer will always be at most 1000 and will never be within
0.001 of a round-off error case.
Sample Input
4
1/2 1
1/2 2
0/1 10
1/2 3
Sample Output
Case #1: 2
Case #2: 2
Case #3: 1
Case #4: 2

题解:题意是一个人玩牌,每次胜率是p,她每天晚上最多玩n局,如果胜的频率大于p就睡,明天继续,如果玩了n局还没大于p

就戒了,以后就不玩了;平均情况下,他可以玩几天;求期望,先求出每天哭着睡觉的概率,然后期望就是:s+=i*Q*pow(1-Q,i-1);

s=Q+2Q(1-Q)+3Q*(1-Q)^2........;大神们通过一定的推算可以得到s=1/Q;

还可以假设期望是e天,情况分两类,第一天哭着睡觉:概率Q,期望1;第一天开心睡觉:期望1-Q,期望1+e;e=Q*1+(1-Q)*(1+e);

e=1/Q;

不过我还是不太理解,概率论没学好T_T;

两种代码:

代码1:直接套了1/Q

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
typedef long long LL;
const int MAXN=110;
double dp[MAXN][MAXN];
int main(){//dp[i][j]=dp[i-1][j-1]*p+dp[i-1][j]*(1-p)
int T,px,py,n,kase=0;
scanf("%d",&T);
while(T--){
scanf("%d/%d %d",&px,&py,&n);
//printf("%d/%d %d\n",px,py,n);
double p=1.0*px/py,Q=0;
mem(dp,0);dp[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=0;j*py<=px*i;j++){
dp[i][j]=dp[i-1][j]*(1-p);
if(j)dp[i][j]+=dp[i-1][j-1]*p;
if(i==n)Q+=dp[i][j];
}
}
printf("Case #%d: %d\n",++kase,(int)(1/Q));
}
return 0;
}

  代码2:暴力趋近o~o;到10w就抄了,1w就ac了,1e-15;

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
typedef long long LL;
const int MAXN=110;
double dp[MAXN][MAXN];
int main(){//dp[i][j]=dp[i-1][j-1]*p+dp[i-1][j]*(1-p)
int T,px,py,n,kase=0;
scanf("%d",&T);
while(T--){
scanf("%d/%d %d",&px,&py,&n);
//printf("%d/%d %d\n",px,py,n);
double p=1.0*px/py,Q=0;
mem(dp,0);dp[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=0;j*py<=px*i;j++){
dp[i][j]=dp[i-1][j]*(1-p);
if(j)dp[i][j]+=dp[i-1][j-1]*p;
if(i==n)Q+=dp[i][j];
}
}
double s=1e-15;
// printf("%lf\n",s);
for(int i=1;i<=10000;i++)s+=i*Q*pow(1-Q,i-1);
printf("Case #%d: %d\n",++kase,(int)s);
}
return 0;
}

  

11427 - Expect the Expected(概率期望)的更多相关文章

  1. UVA 11427 - Expect the Expected(概率递归预期)

    UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...

  2. uva 11427 - Expect the Expected(概率)

    题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...

  3. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  4. UVA - 11427 Expect the Expected (概率dp)

    Some mathematical background. This problem asks you to compute the expected value of a random variab ...

  5. UVA 11427 Expect the Expected (期望)

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=26&pa ...

  6. UVA.11427.Expect the Expected(期望)

    题目链接 \(Description\) https://blog.csdn.net/Yukizzz/article/details/52084528 \(Solution\) 首先每一天之间是独立的 ...

  7. UVA 11427 Expect the Expected(DP+概率)

    链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 [思路] DP+概率 见白书. [代码] #include&l ...

  8. UVa 11427 - Expect the Expected

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  9. UVA11427 Expect the Expected 概率dp+全概率公式

    题目传送门 题意:小明每晚都玩游戏,每一盘赢的概率都是p,如果第一盘就赢了,那么就去睡觉,第二天继续玩:否则继续玩,玩到赢的比例大于p才去睡:如果一直玩了n盘还没完成,就再也不玩了:问他玩游戏天数的期 ...

随机推荐

  1. spring MVC中文乱码相关总结

    总结几种方式,都使用的话能解决大多数乱码的情况 1.所有页面使用 <%@page language="java" pageEncoding="UTF-8" ...

  2. ASP.NET产生随机验证码

    效果图:(Flowing) 1.项目中新建用于存储(位图)图片文件夹 图解: 2.前台可以添加一ASP.NET控件或其他任意用来展示图片标签等(如下) <div> <asp:Imag ...

  3. c#操作MySQL数据库中文出现乱码(很多问号)的解决方法

    前题:修改discuz论坛帖子老连接(从NT版转到PHP版的discuzX3),帖子里有很多引用,有链接都是.aspx这样的链接. 需要将这些链接改到当前论坛的链接. 思路:用asp.net程序获取含 ...

  4. Android 调用webservice faultactor 错误

    1.错误:02-05 09:56:17.266: E/WebServiceUtil(801): --- 内部异常堆栈跟踪的结尾 ---' faultactor: 'null' detail: org. ...

  5. 【LeetCode题意分析&解答】33. Search in Rotated Sorted Array

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...

  6. socket 通信 入门3 android 客户端 C# 服务端

    这是一个android端操控服务器的例子  就是发送简单指令到服务器  然后服务器响应什么的... 当然这里是未完成的  只是简单展示一下大致思路 首先连接建立起来后  服务端给客户端一条信息  告诉 ...

  7. Failure [INSTALL_FAILED_OLDER_SDK]

    在AndroidManifest.xml 中把  <uses-sdk android:minSdkVersion="21" />的版本调节的低一点

  8. JAVA CAS单点登录(SSO)

    一.教程前言 教程目的:从头到尾细细道来单点登录服务器及客户端应用的每个步骤 单点登录(SSO):请看百科解释猛击这里打开 本教程使用的SSO服务器是Yelu大学研发的CAS(Central Auth ...

  9. linux-0.11抠代码-GDB+VMWARE

    vmware新建一个虚拟机,硬盘为0.1G,建立完成后要先启动一次虚拟机,此时无任何系统,然后再关闭,应该会多出一个ostest-flat.vmdk这个虚拟磁盘文件,下面要用到 新建完成后 我的虚拟机 ...

  10. lightoj Again Array Queries

    1100 - Again Array Queries   PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limit: 32 ...