Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4384    Accepted Submission(s): 1556

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The
typical way to solve such an exercise is to show a series of
implications. For instance, one can proceed by showing that (a) implies
(b), that (b) implies (c), that (c) implies (d), and finally that (d)
implies (a). These four implications show that the four statements are
equivalent.

Another way would be to show that (a) is equivalent
to (b) (by proving that (a) implies (b) and that (b) implies (a)), that
(b) is equivalent to (c), and that (c) is equivalent to (d). However,
this way requires proving six implications, which is clearly a lot more
work than just proving four implications!

I have been given some
similar tasks, and have already started proving some implications. Now I
wonder, how many more implications do I have to prove? Can you help me
determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤
50000): the number of statements and the number of implications that
have already been proved.
* m lines with two integers s1 and s2
(1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved
that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number of additional implications that
need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<vector>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
const int MAXN=;
int scc,dfs_blocks;
int dfn[MAXN],low[MAXN],Instack[MAXN],in[MAXN],out[MAXN],sc[MAXN];
stack<int>S;
vector<int>vec[MAXN];
void initial(){
scc=;dfs_blocks=;
mem(dfn,);mem(low,);mem(Instack,);mem(in,);mem(out,);mem(sc,);
while(!S.empty())S.pop();
for(int i=;i<MAXN;i++)vec[i].clear();
}
void targin(int u,int fa){
S.push(u);
Instack[u]=;
dfn[u]=low[u]=++dfs_blocks;
for(int i=;i<vec[u].size();i++){
int v=vec[u][i];
if(!dfn[v]){
targin(v,u);
low[u]=min(low[u],low[v]);
}
else if(Instack[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
scc++;
while(){
int v=S.top();
S.pop();
Instack[v]=;
sc[v]=scc;
if(u==v)break;
}
}
}
int main(){
int T,m,n,x,y;
scanf("%d",&T);
while(T--){
initial();
scanf("%d%d",&n,&m);
while(m--){
scanf("%d%d",&x,&y);
vec[x].push_back(y);
}
for(int i=;i<=n;i++){
if(!dfn[i])targin(i,-);
}
for(int i=;i<=n;i++){
for(int j=;j<vec[i].size();j++){
int v=vec[i][j];
if(sc[i]!=sc[v])in[sc[v]]++,out[sc[i]]++;
}
}
int sumin=,summa=;
// printf("%d\n",scc);
if(scc==){
puts("");continue;
}
for(int i=;i<=scc;i++){
if(in[i]==)sumin++;
if(out[i]==)summa++; }
printf("%d\n",max(sumin,summa));
}
return ;
}

Proving Equivalences(加多少边使其强联通)的更多相关文章

  1. HDU2767 Proving Equivalences(加边变为强联通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  3. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  4. Proving Equivalences (hdu 2767 强联通缩点)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  5. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  6. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  7. UVA12167 Proving Equivalences

    UVA12167 Proving Equivalences 题意翻译 题目描述 在数学中,我们常常需要完成若干命题的等价性证明. 例如:有4个命题a,b,c,d,要证明他们是等价的,我们需要证明a&l ...

  8. HDU 2767-Proving Equivalences(强联通+缩点)

    题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...

  9. UVALive - 4287 - Proving Equivalences(强连通分量)

    Problem   UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...

随机推荐

  1. C#经典之Application.DoEvents()的使用

    最近做了一个文件上传的模块,因为牵扯到电脑文件的扫描,想做一个实时显示当前扫面文件的功能,就类似于360文件扫描时的效果,本来打算用多线程来实现,但是方法太多没有实现,后来在程序中进行控制,由于文件太 ...

  2. The type javax.servlet.http.HttpServletRequest cannot be resolved.

    The type javax.servlet.http.HttpServletRequest cannot be resolved. It is indirectly referenced from ...

  3. 使用JDom解析XML文档模拟Spring的配置文件解析

    在J2EE项目中可能会涉及到一些框架的使用,最近接触到了SSH,拿Spring来说配置文件的使用是相当重要的,Spring的配置文件是一个xml文件,Spring是如何读取到配置文件并进行依赖注入的呢 ...

  4. VC++学习之网络编程中的套接字

    VC++学习之网络编程中的套接字 套接字,简单的说就是通信双方的一种约定,用套接字中的相关函数来完成通信过程.应用层通过传输层进行数据通信时,TCP和UDP会遇到同时为多个应用程序进程提供并发服务的问 ...

  5. cocos2d-x学习日志(12) --弹出对话框的设计与实现

    我们时常需要这么些功能,弹出一个层,给与用户一些提示,这也是一种模态窗口,在没有对当前对话框进行确认的时候,不能继续往下操作. 功能分析 我们设计一个对话框,对话框上有几个按钮(个数可定制),当然有个 ...

  6. codeforces 631C. Report

    题目链接 按题目给出的r, 维护一个递减的数列,然后在末尾补一个0. 比如样例给出的 4 21 2 4 32 31 2 递减的数列就是3 2 0, 操作的时候, 先变[3, 2), 然后变[2, 0) ...

  7. easy ui 学习笔记,不断整理中............

    $.message.show({//浏览器右下角弹框,我列出了几个属性,具体请看API                   title: '提示',                   msg: '恭 ...

  8. 让.net程序自动运行在管理员权限下

    原文:让.net程序自动运行在管理员权限下 如何让.net程序自动运行在管理员权限下 VS2010 c# 编译的WINFORM程序 在Win7 以管理员身份运行 windows 7和vista提高的系 ...

  9. [每日一题] 11gOCP 1z0-052 :2013-09-17 DRA--Data Recovery Advisor.............................B31

    转载请注明出处:http://blog.csdn.net/guoyjoe/article/details/11818529 正确答案:AD 数据库恢复顾问(DRA)是一个诊断和修复数据库问题的工具.共 ...

  10. Data Guard相关参数学习介绍

    LOG_ARCHIVE_DEST_n 参数属性介绍 该参数的n在11g中为1到31,下列为参数的属性值: u  AFFIRM and NOAFFIRM u  ALTERNATE (not suppor ...