Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4384    Accepted Submission(s): 1556

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The
typical way to solve such an exercise is to show a series of
implications. For instance, one can proceed by showing that (a) implies
(b), that (b) implies (c), that (c) implies (d), and finally that (d)
implies (a). These four implications show that the four statements are
equivalent.

Another way would be to show that (a) is equivalent
to (b) (by proving that (a) implies (b) and that (b) implies (a)), that
(b) is equivalent to (c), and that (c) is equivalent to (d). However,
this way requires proving six implications, which is clearly a lot more
work than just proving four implications!

I have been given some
similar tasks, and have already started proving some implications. Now I
wonder, how many more implications do I have to prove? Can you help me
determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤
50000): the number of statements and the number of implications that
have already been proved.
* m lines with two integers s1 and s2
(1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved
that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number of additional implications that
need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<vector>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
const int MAXN=;
int scc,dfs_blocks;
int dfn[MAXN],low[MAXN],Instack[MAXN],in[MAXN],out[MAXN],sc[MAXN];
stack<int>S;
vector<int>vec[MAXN];
void initial(){
scc=;dfs_blocks=;
mem(dfn,);mem(low,);mem(Instack,);mem(in,);mem(out,);mem(sc,);
while(!S.empty())S.pop();
for(int i=;i<MAXN;i++)vec[i].clear();
}
void targin(int u,int fa){
S.push(u);
Instack[u]=;
dfn[u]=low[u]=++dfs_blocks;
for(int i=;i<vec[u].size();i++){
int v=vec[u][i];
if(!dfn[v]){
targin(v,u);
low[u]=min(low[u],low[v]);
}
else if(Instack[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
scc++;
while(){
int v=S.top();
S.pop();
Instack[v]=;
sc[v]=scc;
if(u==v)break;
}
}
}
int main(){
int T,m,n,x,y;
scanf("%d",&T);
while(T--){
initial();
scanf("%d%d",&n,&m);
while(m--){
scanf("%d%d",&x,&y);
vec[x].push_back(y);
}
for(int i=;i<=n;i++){
if(!dfn[i])targin(i,-);
}
for(int i=;i<=n;i++){
for(int j=;j<vec[i].size();j++){
int v=vec[i][j];
if(sc[i]!=sc[v])in[sc[v]]++,out[sc[i]]++;
}
}
int sumin=,summa=;
// printf("%d\n",scc);
if(scc==){
puts("");continue;
}
for(int i=;i<=scc;i++){
if(in[i]==)sumin++;
if(out[i]==)summa++; }
printf("%d\n",max(sumin,summa));
}
return ;
}

Proving Equivalences(加多少边使其强联通)的更多相关文章

  1. HDU2767 Proving Equivalences(加边变为强联通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  3. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  4. Proving Equivalences (hdu 2767 强联通缩点)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  5. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  6. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  7. UVA12167 Proving Equivalences

    UVA12167 Proving Equivalences 题意翻译 题目描述 在数学中,我们常常需要完成若干命题的等价性证明. 例如:有4个命题a,b,c,d,要证明他们是等价的,我们需要证明a&l ...

  8. HDU 2767-Proving Equivalences(强联通+缩点)

    题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...

  9. UVALive - 4287 - Proving Equivalences(强连通分量)

    Problem   UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...

随机推荐

  1. Performance tool httperf

    httperf: A relatively well-known open source utility developed by HP, for Linux operating systems on ...

  2. Twemproxy 分布式集群缓存代理服务器

    Twemproxy 分布式集群缓存代理服务器 是一个使用C语言编写.以代理的方式实现的.轻量级的Redis代理服务器, 它通过引入一个代理层,将应用程序后端的多台Redis实例进行统一管理, 使 应用 ...

  3. HDU2955-Robberies

    描述: The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usual ...

  4. 同步队列-Queue模块解析

    Queue模块解决了生产者.消费者问题,在多线程编程中进行线程通信的时候尤其有用,Queue类封装了加锁解锁的过程.         在Queue模块中有三种不同的队列类,区别是不同队列取出数据的顺序 ...

  5. linux杂记(⑨)vi使用说明

    基本上vi共分为三种模式,分别是[一般模式]].[编辑模式]与[指令列命令模式].这三种模式的作用是: 一般模式:以vi处理一个档案的时候,一进来该档案就是一般模式.在这个模式中,你可以使用[上下左右 ...

  6. gulp+browserfy模块化工具环境搭建

    1.下载ruby,在ruby环境下安装sass; 2.安装nodejs; 3.进入当前项目所在目录,在cmd命令行中输入npm install; 4.安装browserify和gulp 安装brows ...

  7. codevs 1183 泥泞的道路 01分数规划

    题目链接 题目描述 Description CS有n个小区,并且任意小区之间都有两条单向道路(a到b,b到a)相连.因为最近下了很多暴雨,很多道路都被淹了,不同的道路泥泞程度不同.小A经过对近期天气和 ...

  8. 输入输出函数库stdio.h

    函数名 函数类型与形参类型 函数功能 函数返回值 clearerr void clearerr(fp) FILE * fp; 清除文件指针错误 无 close int close(fp) int fp ...

  9. 服务启动项 Start类型详解

    注册表的服务启动项 Start类型详解 HKLM\SYSTEM\CurrentControlSet\services\ 下的服务项.不论有没有在services.msc服务管理控制台中显示,在注册表中 ...

  10. uva 719 Glass Beads(后缀自动机)

    [题目链接] https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=524&am ...