1.Probability mass functions (pmf) and Probability density functions (pdf)

pmf 和 pdf 类似,但不同之处在于所适用的分布类型

PMF -> <font color='green'>discrete distributions</font>, while pdf -> <font color='green'>continuous distributions</font>

例如:

pmf: if P(X=5) = 0.2,则随机变量等于5时的概率是0.2
(pmf非负且sum等于1)

但是pdf就不能这么说了,因为pdf定义在point上,而他的Probability却定义在积分上,即:$$\int_A^Bf(x)dx \quad \textrm{and} \quad X\in [A,B] $$
若$A=B$则积分为0,给定点的"概率"永远是0。
因为我们只要确保积分后的结果是合法的概率值就可以,所以pdf可以大于1(离散分布就不可以了),但是pdf必须非负且积分区间是$(-\infty, +\infty)$

2.Cumulative Distribution Funtions

CDF是累积分布函数
$F(c) = P(X<c);\textrm{F is the CDF}$
离散分布:
$F(c) = \sum_{-\infty}^c p(c)$
连续分布:
$F(c) = \int_{-\infty}^c f(x)dx$

3.likelihood function

在统计学中,Likelihood function似然函数是一个带参数的统计模型函数,所谓统计模型statistical model就是$(S,P)$,其中S是可能的观测结果集合,例如,样本空间,P则是基于S的概率分布,也就是S中事件发生的概率。似然函数可以用来做参数估计,在英语单词中likelihood和probability可近似使用,非正式语境下为同义词。但在统计学上是有差别的。

probability:给定参数,描述事件结果的函数。e.g.如果一个硬币抛十次,每次正面朝上的probability是多少?

likelihood:给定结果,描述带参数的函数。e.g.如果一个硬币抛了十次,有十次正面朝上,likelihood是什么?

定义:

$$\ell(\theta|x) = P(x|\theta)$$

解释:The likelihood of a set of parameter values, θ, given outcomes x, is equal to theprobability of those observed outcomes given those parameter values.

似然函数依据变量是离散的还是连续的可分为如下:

Discrete probability distribution:$\ell(\theta|x) = p_{\theta}(x)=P_{\theta}(X=x)$

Continuous probability distribution:$\ell(\theta|x)=f_\theta(x)$

这里面需要注意到是似然函数是参数$\theta$的函数,x是常量,大写的$X$是随机“变量”,小写的$x$是常量(给定的值)。可以这样理解,在现有模型下,x是一次实验的观测结果。对于$f(x|\theta)$,如果把它看成x固定,则是一个pdf,如果把他看成x固定,则是likelihood function.但不能理解成条件概率,因为$\theta$不是随机变量,只是参数。所以大多情况下,会写成$P(X=x;\theta)$以作区别。

总结:PMF and PDF are almost the same, but one is for discrete distributions and one is for continuous distributions. CDF are different, but are the sum/integral of PMF/PDF and tell us **the probability that X is less than a certain value**.

参考资料:https://www.quora.com/What-is-the-relationship-between-the-probability-mass-density-and-cumulative-distribution-functions

Probability theory的更多相关文章

  1. 一起啃PRML - 1.2 Probability Theory 概率论

    一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...

  2. Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划

    A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...

  3. 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

    一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...

  4. [PR & ML 3] [Introduction] Probability Theory

    虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach.奇怪发中文的笔记就很多人看,英文就没有了,其 ...

  5. 概率论基础知识(Probability Theory)

    概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r ...

  6. P1-概率论基础(Primer on Probability Theory)

    2.1概率密度函数 2.1.1定义 设p(x)为随机变量x在区间[a,b]的概率密度函数,p(x)是一个非负函数,且满足 注意概率与概率密度函数的区别. 概率是在概率密度函数下对应区域的面积,如上图右 ...

  7. Tips on Probability Theory

    1.独立与不相关 随机变量X和Y相互独立,有:E(XY) = E(X)E(Y). 独立一定不相关,不相关不一定独立(高斯过程里二者等价) .对于均值为零的高斯随机变量,“独立”和“不相关”等价的. 独 ...

  8. CF1239A Ivan the Fool and the Probability Theory

    思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...

  9. CF C.Ivan the Fool and the Probability Theory【思维·构造】

    题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...

随机推荐

  1. HDU 1004 - Let the Balloon Rise(map 用法样例)

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  2. C期未考试参考答案

    输入10个数,要求编写一个排序函数,能够实现按绝对值从大到小排序.在主函数中输入10个数.输出排序后的10个数 #include<stdio.h>#include<math.h> ...

  3. 关于google CDN 在中国访问不了的解决办法

    因原网站的script部分使用了google CDN,导致在中国看不了跟google相关的所有东西 解决方法: 得把google CDN 连接改成其他公司的CDN 例: 修改前:<script ...

  4. $.Event 你不知道的用法

    最近在使用Bootstrap.js,一不小心趴开源码看了一下,尤其是看到tab.js var hideEvent = $.Event('hide.bs.tab', { relatedTarget: $ ...

  5. Android 分享微信好友 朋友圈

    第三方应用,可以调用微信分享,把链接,文字,各种media,分享到微信好友或者微信朋友圈,步骤: package com.edaixi.utils; import android.content.Co ...

  6. js数组(二)

    一.位置方法 indexOf()和laseIndexOf() indexOf是从数组的第0项开始向后查找,没有找到返回-1,要求使用=== var numbers = [1,2,3,4,5,4,3,2 ...

  7. ContentProvider类的解析

    一.ContentProvider类 1.作用:专门用于不同应用之间进行数据共享的方式. 二.实现方法 1.创建ContenteProvider类 步骤一:继承ContentProvider接口,重写 ...

  8. [转]数组引用:C++ 数组做参数 深入分析

    "数组引用"以避免"数组降阶"(本文曾贴于VCKBASE\C++论坛) 受[hpho]的一段模板函数的启发,特写此文,如有雷同,实在遗憾. 数组降阶是个讨厌的事 ...

  9. Linux04--文本编辑器vim

    1.Linux系统下常用的文本编辑器介绍 •  命令行方式      vi/vim: 类UNIX操作系统中常用的内置编辑器,习惯操作后功能强大.      pico或nano:一种风格很像Micros ...

  10. PixelFormat 图像颜色的数据格式

    PixelFormat: (指定图像中每个像素的颜色数据的格式) Delphi                                        微软                    ...