Hadoop-Yarn-框架原理及运作机制(原理篇)
文件为转载:http://blog.csdn.net/liuwenbo0920/article/details/43304243
一.YARN基本架构
YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。
二.YARN基本组成结构
YARN 总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为 Slave,ResourceManager负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以 跟踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManger启动可以占用一 定资源的任务。由于不同的ApplicationMaster被分布到不同的节点上,因此它们之间不会相互影响。在本小节中,我们将对YARN的基本组成 结构进行绍。
图描述了YARN的基本组成结构,YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR
AppMstr和MPI AppMstr)和Container等几个组件构成。
1.ResourceManager(RM)
RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。
(1):调度器
调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执 行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分 配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、 CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN 提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。
(2):应用程序管理器
应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。
2.ApplicationMaster(AM)
用户提交的每个应用程序均包含1个AM,主要功能包括:
与RM调度器协商以获取资源(用Container表示);
将得到的任务进一步分配给内部的任务;
与NM通信以启动/停止任务;
监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。
当前YARN 自带了两个AM实现,一个是用于演示AM编写方法的实例程序distributedshell,它可以申请一定数目的Container以并行运行一个 Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster,我们将在第8章对其进行介绍。此外,一些其 他的计算框架对应的AM正在开发中,比如Open MPI、Spark等。
3.NodeManager(NM)
NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接收并处理来自AM的Container启动/停止等各种请求。
4.Container
Container 是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用 Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。
需要注意的是,Container不同于MRv1中的slot,它是一个动态资源划分单位,是根据应用程序的需求动态生成的。截至本书完成时,YARN仅支持CPU和内存两种资源,且使用了轻量级资源隔离机制Cgroups进行资源隔离。
3.YARN工作流程
当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:
第一个阶段是启动ApplicationMaster;
第二个阶段是由ApplicationMaster创建应用程序,为它申请资源,并监控它的整个运行过程,直到运行完成。
如图2所示,YARN的工作流程分为以下几个步骤:
步骤1: 用户向YARN中提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。
步骤2: ResourceManager为该应用程序分配第一个Container,并与对应的Node-Manager通信,要求它在这个Container中启动应用程序的ApplicationMaster。
步骤3: ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManager查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7。
步骤4: ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源。
步骤5: 一旦ApplicationMaster申请到资源后,便与对应的NodeManager通信,要求它启动任务。
步骤6: NodeManager为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务。
步骤7: 各个任务通过某个RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。在应用程序运行过程中,用户可随时通过RPC向ApplicationMaster查询应用程序的当前运行状态。
步骤8: 应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。
4.多角度理解YARN
可将YARN看做一个云操 作系统,它负责为应用程序启动ApplicationMaster(相当于主线程),然后再由ApplicationMaster负责数据切分、任务分 配、启动和监控等工作,而由ApplicationMaster启动的各个Task(相当于子线程)仅负责自己的计算任务。当所有任务计算完成 后,ApplicationMaster认为应用程序运行完成,然后退出。
Hadoop-Yarn-框架原理及运作机制(原理篇)的更多相关文章
- Hadoop Yarn 框架原理及运作机制及与MapReduce比较
Hadoop 和 MRv1 简单介绍 Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动).图 1 演 ...
- Hadoop Yarn内存资源隔离实现原理——基于线程监控的内存隔离方案
注:本文以hadoop-2.5.0-cdh5.3.2为例进行说明. Hadoop Yarn的资源隔离是指为运行着不同任务的“Container”提供可独立使用的计算资源,以避免它们之间相互干扰.目 ...
- Hadoop Yarn框架原理解析
在说Hadoop Yarn的原理之前,我们先来看看Yarn是怎样出现的.在古老的Hadoop1.0中,MapReduce的JobTracker负责了太多的工作,包括资源调度,管理众多的TaskTrac ...
- hadoop yarn
简介: 本文介绍了 Hadoop 自 0.23.0 版本后新的 map-reduce 框架(Yarn) 原理,优势,运作机制和配置方法等:着重介绍新的 yarn 框架相对于原框架的差异及改进:并通过 ...
- hadoop之yarn详解(框架进阶篇)
前面在hadoop之yarn详解(基础架构篇)这篇文章提到了yarn的重要组件有ResourceManager,NodeManager,ApplicationMaster等,以及yarn调度作业的运行 ...
- Android Native -- Message/Handler/Looper机制(原理篇)
⌈Android Native消息队列处理系列文章⌋ Android Native -- Message/Handler/Looper机制(原理篇) Android Native -- Message ...
- hadoop之yarn详解(基础架构篇)
本文主要从yarn的基础架构和yarn的作业执行流程进行阐述 一.yarn的概述 Apache Yarn(Yet Another Resource Negotiator的缩写)是hadoop集群资源管 ...
- Hadoop YARN资源隔离技术
YARN对内存资源和CPU资源采用了不同的资源隔离方案.对于内存资源,它是一种限制性资源,它的量的大小直接决定应用程序的死活,因为应用程序到达内存限制,会发生OOM,就会被杀死.CPU资源一般用Cgr ...
- hadoop之mapreduce详解(进阶篇)
上篇文章hadoop之mapreduce详解(基础篇)我们了解了mapreduce的执行过程和shuffle过程,本篇文章主要从mapreduce的组件和输入输出方面进行阐述. 一.mapreduce ...
- hadoop yarn running beyond physical memory used
老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了 跟这个yarn.nodemanager.pmem-c ...
随机推荐
- let区别(关于racket和r5rs)
R5RS is the Revised5 Report on the Algorithmic Language Scheme.参考http://www.schemers.org/Documents/S ...
- __declspec(dllimport)的作用
是时候总结一下__declspec(dllimport)的作用了.可能有人会问:__declspec(dllimport)和__declspec(dllexport)是一对的,在动态链接库中__dec ...
- Easyui几种布局方式的使用
1.通过标记创建layout. 记得添加"easyui-layout"样式给div标记. <div id="cc" class="easyui ...
- multiset集合容器的集合运算:并、交、差
set和multiset的内部通常是采用平衡二叉树来实现.当放入元素时,会按照一定的排序方法自动排序,默认是按照less<>排序规则来排序.这种自动排序的特性加速了元素查找的过程,但问题是 ...
- jQuery Custom Selector JQuery自定义选择器
什么是JQuery的选择器呢,详见JQuery中的Selector: http://docs.jquery.com/Selectors 比如 $("div:contains('John')& ...
- 【贪心】【TOJ4107】【A simple problem】
Given three integers n(1≤n≤1018), m(1≤m≤105), k(1≤k≤1018). you should find a list of integer A1,A2,- ...
- Cassandra监控 - OpsCenter手册
注:本文转自:http://eric100.blog.51cto.com/2535573/1717792 Opscenter用户手册 1. OpsCenter简介 DataStaxOpsC ...
- 从头开始-05.C语言中函数
函数: 完成特定功能代码段 特点:函数只有调用的时候才会执行 定义格式:返回值类型 函数名称(形参类型 形参名称,...){ 语句; ... } 函数参数 形式参数:在定义函数的时候,函数名后面小括 ...
- ImageButton与Button
1.Button控件 Butotn控件,主要用来实现一些命令操作,通过注册监听事件来实现.首先需要在xml文档中放入一个button按钮. <Button android:id="@+ ...
- 详解JOIN
根据连接中使用的操作符不同,连接条件可分为:等连接,不等连接 连接本身分为: 内连接(INNER JOIN) (1)INNER JOIN 方式(INNER可以省略) 取两表的交集. (2)并表查询 ...