Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:

Only one letter can be changed at a time
Each intermediate word must exist in the dictionary
For example, Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"] As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5. Note: Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.

  DFS 小数据AC:

class Solution {
public:
bool check(const string & a, const string &b)
{
int num = ;
if(a.size() != b.size()) return false;
for(int i = ; i< a.size() ; i++)
{
if(a[i] != b[i])
num++;
}
return num == ;
}
void DFS(const string &start, const string &end, unordered_set<string> &dict, vector<bool> &flag, int nums){ if(start == end ){
res = res > nums ? nums : res;
return ;
}
int i;auto it = dict.begin();
for( i= ; it != dict.end(); it++,i++)
if(flag[i] == false && check(start,*it))
{
flag[i] = true;
DFS(*it,end,dict, flag, nums+);
flag[i] = false;
} }
int ladderLength(string start, string end, unordered_set<string> &dict) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
res = dict.size() + ;
vector<bool> flag(dict.size(), false);
DFS(start, end, dict, flag, );
if(res == dict.size() + ) return ;
return res + ;
}
private :
int res;
};

BFS: 过大数据

class Solution {
public:
int ladderLength(string start, string end, unordered_set<string> &dict) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(start.size() != end.size()) return ;
if(dict.size() == ) return ; queue<string> myqueue, myqueueT;
myqueue.push(start);
int depth = ; while(!myqueue.empty()){
depth++;
while(!myqueue.empty()){
string str = myqueue.front();
myqueue.pop();
for(int i = ; i < str.size() ; i++){
char temp = str[i] ;
for(char c = 'a'; c <= 'z' ;c++){
if(c == temp) continue;
str[i] = c;
if(str == end) return depth;
auto it = dict.find(str) ;
if(it != dict.end() ){
myqueueT.push(str);
dict.erase(it);
}
}
str[i] = temp;
}
}
myqueue.swap( myqueueT);
}
//don't find
return ;
}
};

LeetCode_Word Ladder的更多相关文章

  1. [LeetCode] Word Ladder 词语阶梯

    Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformatio ...

  2. [LeetCode] Word Ladder II 词语阶梯之二

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  3. LeetCode:Word Ladder I II

    其他LeetCode题目欢迎访问:LeetCode结题报告索引 LeetCode:Word Ladder Given two words (start and end), and a dictiona ...

  4. 【leetcode】Word Ladder

    Word Ladder Total Accepted: 24823 Total Submissions: 135014My Submissions Given two words (start and ...

  5. 【leetcode】Word Ladder II

      Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation ...

  6. 18. Word Ladder && Word Ladder II

    Word Ladder Given two words (start and end), and a dictionary, find the length of shortest transform ...

  7. [Leetcode][JAVA] Word Ladder II

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  8. LeetCode127:Word Ladder II

    题目: Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) ...

  9. 【LeetCode OJ】Word Ladder II

    Problem Link: http://oj.leetcode.com/problems/word-ladder-ii/ Basically, this problem is same to Wor ...

随机推荐

  1. Could not find *.apk!解决办法

    右键点击项目选择Properties,把Libraries下Android x.x给remove了. 点右侧的Add Library,选择JRE System Library然后next,重新指定JR ...

  2. QT类的继承结构

    QT类的继承结构 QT的类 core 数据集合 QString 几何类 QPoint QSize QRectangle 系统类 QColor QFont QImage QIcon QCursor QB ...

  3. cf493C Vasya and Basketball

    C. Vasya and Basketball time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  4. C#中dynamic、ExpandoObject 的正确用法

    原文地址:http://www.cnblogs.com/qiuweiguo/archive/2011/08/03/2125982.html dynamic是FrameWork4.0的新特性.dynam ...

  5. POJ3580---SuperMemo (Splay)

    各种操作,区间更新,求最值.翻转.插入.删除.当然是Splay这种神器了. 主要是 revolve这个操作,其实也就是3个区间翻转放到一块, 比如 REVOLVE x y T,T %= (y-x+1) ...

  6. centos Minicom通信终端

    minicom是linux下的串口通信软件,他使用完全使用键盘操作.它虽然没有windows下的超级终端好用,但是它也是一种串口通信的方法.一.minicom安装在超级终端中输入:sally@sall ...

  7. Eclipse中Cannot find any provider supporting DES解决之道

    原文出处:http://blog.csdn.net/darwinchina/article/details/12037999 异常: Caused by: java.security.NoSuchAl ...

  8. openssl 非对称加密算法DSA命令详解

    1.DSA算法概述 DSA算法是美国的国家标准数字签名算法,它只能用户数字签名,而不能用户数据加密和密钥交换. DSA与RSA的生成方式不同,RSA是使用openssl提供的指令一次性的生成密钥(包括 ...

  9. 使用RDS不得不知的注意事项

    使用RDS不得不知的注意事项 1.RDS实例升级需要注意的事项 RDS在进行实例升级的过程中会出现最长30秒左右的连接闪断,需要您提前做好准备,并设置好程序跟RDS的自动重连,避免因为升级的闪断导致您 ...

  10. [转载]C#开源项目(国外的还是很多)

    C#开源项目(国外的还是很多)一.Ajax框架Ajax.NET Professional (AjaxPro)是最先把AJAX技术在微软.NET环境下的实现的AJAX框架之一.它在客户端脚本之上创建代理 ...