UVAlive 6131 dp+斜率优化
这道题和06年论文《从一类单调性问题看算法的优化》第一道例题很相似。
题意:给出n个矿的重量和位置,这些矿石只能从上往下运送,现在要在这些地方建造m个heap,要使得,sigma距离*重量最小。
思路:O(n ^ 3)的DP解法是很容易想出来的。
dp[i][j] 表示第i个矿石点是j个heap的最小花费。
dp[i][j] = min(dp[i][j] , dp[k][j - 1] + sigma(sum[i] - sum[k])) 。
其中i , j , k 分别要一重循环,所以复杂度达到10 ^ 9。
这显然是TLE的,所以需要优化。
我们可以来看状态转移方程,dp[i][j] = dp[k][j - 1] +( sum1[i] - sum1[k] ) * a[i] - (sum2[i] - sum2[k]) .其中sum1是1到i的总重量,sum2表示1到i的总重量*距离。
这样,我们就可以进行斜率优化了。
所以这一维就降成O(1)了。那总的复杂度就是O(n ^ 2)。
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Max 2505
#define FI first
#define SE second
#define ll long long
#define PI acos(-1.0)
#define inf 0x7ffffffffffffll
#define LL(x) ( x << 1 )
#define bug puts("here")
#define PII pair<int,int>
#define RR(x) ( x << 1 | 1 )
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) using namespace std; #define N 1111 ll sum1[N] ;
ll sum2[N] ;
ll dp[N][N] ;
int qe[N] ;
ll a[N] , b[N] ;
int n , m ;
//分子
ll getU(int j , int k , int z){
return dp[k][j - 1] + sum2[k] - (dp[z][j - 1] + sum2[z]) ;
}
//分母
ll getD(int k , int z){
return sum1[k] - sum1[z] ;
} ll getDP(int i ,int j ,int k){
return dp[k][j - 1] + (sum1[i] - sum1[k]) * a[i] - (sum2[i] - sum2[k]) ;
} int main() { while(cin >> n >> m){
for (int i = 1 ; i <= n ; i ++ )cin >> a[i] >> b[i] ;
sum1[0] = sum2[0] = 0 ;
for (int i = 1 ; i <= n ; i ++ ){
sum1[i] = sum1[i - 1] + b[i] ;
sum2[i] = sum2[i - 1] + a[i] * b[i] ;
// cout << sum1[i] << " " << sum2[i] << endl;
}
for (int i = 0 ; i <= n ; i ++ )
for (int j = 0 ; j <= m ; j ++) dp[i][j] = inf ;
dp[0][0] = 0 ; for (int j = 1 ; j <= m ; j ++ ){
int head = 0 , tail = 0 ;
qe[tail ++ ] = 0 ;
for (int i = 1 ; i <= n ; i ++ ){
while(head + 1 < tail && getU(j , qe[head + 1] , qe[head]) <= a[i] * getD(qe[head + 1] , qe[head]))
head ++ ;
dp[i][j] = getDP(i , j , qe[head]) ; while(head + 1 < tail && getU(j , i , qe[tail - 1]) * getD(qe[tail - 1] ,qe[tail - 2]) <=
getU(j , qe[tail - 1] , qe[tail - 2]) * getD(i , qe[tail - 1]))
tail -- ;
qe[tail ++ ] = i ;
}
}
cout << dp[n][m] << endl ;
}
return 0 ;
}
UVAlive 6131 dp+斜率优化的更多相关文章
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
- 学渣乱搞系列之dp斜率优化
学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...
- DP斜率优化总结
目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
- dp斜率优化
算法-dp斜率优化 前置知识: 凸包 斜率优化很玄学,凭空讲怎么也讲不好,所以放例题. [APIO2014]序列分割 [APIO2014]序列分割 给你一个长度为 \(n\) 的序列 \(a_1,a_ ...
随机推荐
- yii2 添加模块过程
本文以Yii2基本应用程序模板为例,介绍下向该框架下加入新模块的过程: 1. 新建模块相关目录与文件 step 1: 新建目录结构 首先在根目录下新建modules目录,然后在该目录下面添加模块目 ...
- .NET中删除空白字符串的10大方法
介绍 我们有无数方法可用于删除字符串中的所有空白.大部分都能够在绝大多数的用例中很好工作,但在某些对时间敏感的应用程序中,是否采用最快的方法可能就会造成天壤之别. 如果你问空白是什么,那说起来还真是有 ...
- 迁移/home目录至新硬盘分区总结--无备份情况下
搞了一天,终于成功迁移.由于一开始就没备份过程实在很曲折. 希望本篇对那些没有备份习惯的朋友们有所帮助. 准备工作: sudo vim /etc/fstab 在文件中加入: /dev/sdb8 ...
- linux(vi)多行注释和取消注释.
//comment1,'ctrl+v' to VISUAL BLOCK mode.2,'j' or 'k' to select/deselect lines.3,'I' to INSERT mode. ...
- Objective-C学习篇10—NSDate与NSDateFormatter
NSDate NSDate 时间类,继承自NSObject,其对象表示一个时间点 NSDate *date = [NSDate date]; NSLog(@"date = %@", ...
- BIOS+MBR模式 VS UEFI+GPT模式
EFI与MBR启动的区别 大硬盘和WIN8系统,让我们从传统的BIOS+MBR模式升级到UEFI+GPT模式,现在购买的主流电脑,都是预装WIN8系统,为了更好的支持2TB硬盘 ,更快速的启动win ...
- 你好,C++(29)脚踏两只船的函数不是好函数 5.4 函数设计的基本规则
5.4 函数设计的基本规则 函数是C++程序的基本功能单元,就像一块块砖头可以有规则地垒成一座房子,而一个个函数也可以有规则地组织成一个程序.我们在大量使用他人设计好的函数的同时,也在设计大量的函数 ...
- MySQL查询执行的基础
当希望MySQL能够以更高的性能运行查询时,最好的办法就是弄清楚MySQL是如何优化和执行查询的.一旦理解这一点,很多查询优化实际上就是遵循一些原则让优化器能够按照预想的合理的方式运行. 换句话说,是 ...
- query等待ajax执行完毕再继续执行下面代码的操作
Jquery等待ajax执行完毕再继续执行下面代码的效果,具体代码如下,其实就是将 jquery ajax 函数的 async 参数设置为 false 即可,该参数默认为 true: $(docume ...
- js获取url?后的参数
function GetRequest() { var url = location.search; //获取url中"?"符后的字串 var theRequest = new O ...