MAE、MSE、RMSE、MAPE(MAPD)这些都是常见的回归预测评估指标,重温下它们的定义和区别以及优缺点吧
 
 

MAE(Mean Absolute Error) 平均绝对误差 

                                               

是基础的评估方法,后面的方法一般以此为参考对比优劣。

MSE(Mean Square Error) 平均平方差

                                             

    对比MAE,MSE可以放大预测偏差较大的值,可以比较不同预测模型的稳定性,应用场景相对多一点。

RMSE(Root Mean Square Error) 方均根差

                                            

    因为使用的是平均误差,而平均误差对异常点较敏感,如果回归器对某个点的回归值很不合理,那么它的误差则比较大,从而会对RMSE的值有较大影响,即平均值是非鲁棒的。

    改进:使用误差的分位数来代替,如中位数来代替平均数。假设100个数,最大的数再怎么改变,中位数也不会变,因此其对异常点具有鲁棒性。

   平均平方差/均方误差是回归任务最常用的性能度量。

MAPE (Mean Absolute Percentage Error, 也叫mean absolute percentage deviation (MAPD)

                                           

    MAPE不仅仅考虑预测值与真实值的误差,还考虑了误差与真实值之间的比例,在某些场景下,比如房价从0.5w到5w之间,0.5预测成1.0与5.0预测成4.5的差距是非常大的,在一些竞赛当中,MAPE也是常用的目标函数之一。

在统计领域是一个预测准确性的衡量指标。

回归模型效果评估系列2-MAE、MSE、RMSE、MAPE(MAPD)的更多相关文章

  1. 回归模型效果评估系列1-QQ图

    (erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y ...

  2. 回归模型效果评估系列3-R平方

    决定系数(coefficient of determination,R2)是反映模型拟合优度的重要的统计量,为回归平方和与总平方和之比.R2取值在0到1之间,且无单位,其数值大小反映了回归贡献的相对程 ...

  3. 【NLP】蓦然回首:谈谈学习模型的评估系列文章(一)

    统计角度窥视模型概念 作者:白宁超 2016年7月18日17:18:43 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量. ...

  4. python + sklearn ︱分类效果评估——acc、recall、F1、ROC、回归、距离

    之前提到过聚类之后,聚类质量的评价: 聚类︱python实现 六大 分群质量评估指标(兰德系数.互信息.轮廓系数) R语言相关分类效果评估: R语言︱分类器的性能表现评价(混淆矩阵,准确率,召回率,F ...

  5. 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型

    MNIST 被喻为深度学习中的Hello World示例,由Yann LeCun等大神组织收集的一个手写数字的数据集,有60000个训练集和10000个验证集,是个非常适合初学者入门的训练集.这个网站 ...

  6. Spark机器学习5·回归模型(pyspark)

    分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L2正则化时--岭回归(ridge regression) 应用L1正则化时--LASSO ...

  7. Spark 决策树--回归模型

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.evaluation.Regres ...

  8. 深度研究:回归模型评价指标R2_score

    回归模型的性能的评价指标主要有:RMSE(平方根误差).MAE(平均绝对误差).MSE(平均平方误差).R2_score.但是当量纲不同时,RMSE.MAE.MSE难以衡量模型效果好坏.这就需要用到R ...

  9. 回归模型的性能评价指标(Regression Model Performance Evaluation Metric)

    回归模型的性能评价指标(Performance Evaluation Metric)通常有: 1. 平均绝对误差(Mean Absolute Error, MAE):真实目标y与估计值y-hat之间差 ...

随机推荐

  1. substring()方法到底做了什么?不同版本的JDK中是否有区别?为什么?

      该文章是图说Java系列文章中的一篇 substring(int beginIndex, int endIndex)方法在jdk 6和jdk 7中的实现是不同的.了解他们的区别可以帮助你更好的使用 ...

  2. (转)Android数据的四种存储方式SharedPreferences、SQLite、Content Provider和File (三) —— SharePreferences

    除了SQLite数据库外,SharedPreferences也是一种轻型的数据存储方式,它的本质是基于XML文件存储key-value键值对数据,通常用来存储一些简单的配置信息.其存储位置在/data ...

  3. 面试自我介绍之English

    Version 1 Hello, everyone. I am so glad to stand here. First of all, I will introduce myself. My nam ...

  4. 用ladon框架封装Python为Webservice接口以及调用接口的方法

    一.用ladon框架封装Python为Webservice接口 功能实现的同时,希望将接口开放给别人,而封装python接口的一个再简单不过的框架Ladon,而且提供不同的协议,包括SOAP和Json ...

  5. zuul学习

    1.zuul可以代理界面所需的后端服务,可以解决CORS(Cross-Origion-Resource-Sharing)和认证问题(authentication)问题 2.zuul是使用ribbon来 ...

  6. tp 事务处理

    tp的事务开启是非常简单的, 只需要M()->startTrans();//开启事务,M()可以是M('xxx') $m->rollback();//事务回滚 $m->commit( ...

  7. my-innodb-heavy-4G.cnf配置文件注解

    [client] ####客户端 port = 3306 ####mysql客户端连接时的默认端口号 socket = /application/mysql-5.5.32/tmp/mysql.sock ...

  8. unicode utf8 学习记录

    显示器- unicode -系统- utf8 -存储设备 Unicode是一套复杂的字符编码标准,简单来说就是将人类使用的每个所谓字符与一个非负整数对应,并且保证不同的字符对应的整数一定不同.UTF- ...

  9. centos7.2云主机安装桌面

    yum groups install "X Window System" yum groupinstall "GNOME Desktop" systemctl  ...

  10. linux服务器上没有jar命令

    在linux服务器上用jar命令解压jar包时,提示找不到jar命令. 但是用java -version查看jdk版本,又可以显示出jdk版本. echo $JAVA_HOME查看环境变量路径,找不到 ...