MAE、MSE、RMSE、MAPE(MAPD)这些都是常见的回归预测评估指标,重温下它们的定义和区别以及优缺点吧
 
 

MAE(Mean Absolute Error) 平均绝对误差 

                                               

是基础的评估方法,后面的方法一般以此为参考对比优劣。

MSE(Mean Square Error) 平均平方差

                                             

    对比MAE,MSE可以放大预测偏差较大的值,可以比较不同预测模型的稳定性,应用场景相对多一点。

RMSE(Root Mean Square Error) 方均根差

                                            

    因为使用的是平均误差,而平均误差对异常点较敏感,如果回归器对某个点的回归值很不合理,那么它的误差则比较大,从而会对RMSE的值有较大影响,即平均值是非鲁棒的。

    改进:使用误差的分位数来代替,如中位数来代替平均数。假设100个数,最大的数再怎么改变,中位数也不会变,因此其对异常点具有鲁棒性。

   平均平方差/均方误差是回归任务最常用的性能度量。

MAPE (Mean Absolute Percentage Error, 也叫mean absolute percentage deviation (MAPD)

                                           

    MAPE不仅仅考虑预测值与真实值的误差,还考虑了误差与真实值之间的比例,在某些场景下,比如房价从0.5w到5w之间,0.5预测成1.0与5.0预测成4.5的差距是非常大的,在一些竞赛当中,MAPE也是常用的目标函数之一。

在统计领域是一个预测准确性的衡量指标。

回归模型效果评估系列2-MAE、MSE、RMSE、MAPE(MAPD)的更多相关文章

  1. 回归模型效果评估系列1-QQ图

    (erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y ...

  2. 回归模型效果评估系列3-R平方

    决定系数(coefficient of determination,R2)是反映模型拟合优度的重要的统计量,为回归平方和与总平方和之比.R2取值在0到1之间,且无单位,其数值大小反映了回归贡献的相对程 ...

  3. 【NLP】蓦然回首:谈谈学习模型的评估系列文章(一)

    统计角度窥视模型概念 作者:白宁超 2016年7月18日17:18:43 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量. ...

  4. python + sklearn ︱分类效果评估——acc、recall、F1、ROC、回归、距离

    之前提到过聚类之后,聚类质量的评价: 聚类︱python实现 六大 分群质量评估指标(兰德系数.互信息.轮廓系数) R语言相关分类效果评估: R语言︱分类器的性能表现评价(混淆矩阵,准确率,召回率,F ...

  5. 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型

    MNIST 被喻为深度学习中的Hello World示例,由Yann LeCun等大神组织收集的一个手写数字的数据集,有60000个训练集和10000个验证集,是个非常适合初学者入门的训练集.这个网站 ...

  6. Spark机器学习5·回归模型(pyspark)

    分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L2正则化时--岭回归(ridge regression) 应用L1正则化时--LASSO ...

  7. Spark 决策树--回归模型

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.evaluation.Regres ...

  8. 深度研究:回归模型评价指标R2_score

    回归模型的性能的评价指标主要有:RMSE(平方根误差).MAE(平均绝对误差).MSE(平均平方误差).R2_score.但是当量纲不同时,RMSE.MAE.MSE难以衡量模型效果好坏.这就需要用到R ...

  9. 回归模型的性能评价指标(Regression Model Performance Evaluation Metric)

    回归模型的性能评价指标(Performance Evaluation Metric)通常有: 1. 平均绝对误差(Mean Absolute Error, MAE):真实目标y与估计值y-hat之间差 ...

随机推荐

  1. 解题:USACO18FEB Taming the Herd

    题面 从零开始的DP学习系列之贰(我的DP真的就这么烂TAT) 设DP状态的另一个技巧,考虑题目中有关答案的各种信息 然后这种和结尾有关系的$dp$可以考虑向前找结尾来转移 设$dp[i][j]$表示 ...

  2. 求n个数中前k个数,按之前的顺序输出(HK IPM)

    For smaller k: #include <cstdio> #include <cstdlib> #include <cstring> #include &l ...

  3. zookeeper的安装及共享锁的应用

         Zookeeper的安装及共享锁的应用 1.zookeeper的安装 1.1  下载安装包 Wget http://mirror.bit.edu.cn/apache/zookeeper/zo ...

  4. web页面的绝对路径

    在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:一.使用${pageContext.request ...

  5. linux命令总结之date命令

    命令简介: date 根据给定格式显示日期或设置系统日期时间.print or set the system date and time 指令所在路径:/bin/date 命令语法: date [OP ...

  6. PyQt 5.4参考指南 ---- PyQt5和PyQt4之间的差异

    欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/in ...

  7. 数据分析与展示---Matplotlib基本绘图函数

    一:基本绘图函数(这里介绍16个,还有许多其他的) 二:pyplot饼图plt.pie的绘制 三:pyplot直方图plt.hist的绘制 (一)修改第二个参数bins:代表直方图的个数,均分为多段, ...

  8. Bittersweet——NOIP2018 游记

    p { font-size: 16px; line-height: 1.5em; } blockquote { font-family: 'Times New Roman', 楷体; text-ali ...

  9. Spring MVC处理响应的 header

    我们经常需要在HttpResponse中设置一些headers,我们使用Spring MVC框架的时候我们如何给Response设置Header呢? So easy, 看下面的代码: @Request ...

  10. soj1049.Mondriaan

    1049. Mondriaan Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Squares and rectangl ...