http://acm.timus.ru/problem.aspx?space=1&num=1519

题目描述

一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数。

输入

The first line contains the integer numbers N and M (2 ≤ N, M ≤ 12). Each of the next N lines contains M characters, which are the corresponding cells of the rectangle. Character "." (full stop) means a cell, where a segment of the race circuit should be built, and character "*" (asterisk) - a cell, where a gopher hole is located.

输出

You should output the desired number of ways. It is guaranteed, that it does not exceed 2^63-1.

样例输入

4 4
**..
....
....
....

样例输出

2

直接写时间复杂度过不了,直接写了个dp里面有很多无用状态,剪枝一下(存下一个的有用状态)就行了。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
#define LL long long
int n,m;
char ch[][]={};
int id[][]={};
LL shu[]={};
map< int,LL >f[];
inline int getit(int z,int i){return (z/shu[i])%;}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%s",ch[i]+);
for(int i=;i<=n;i++)for(int j=;j<=m;j++)id[i][j]=(i-)*m+j;
shu[]=;int ff=;
for(int i=;i<=m+;i++)shu[i]=shu[i-]*;
if(ch[][]=='.'){f[][+*]=;ff=;}
else f[][]=;
int mx=shu[m+]*,now,nex,fla,z,x,y; LL val;
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
if(i==n&&j==m-)break;
now=id[i][j];nex=now+;fla=;
if(ch[i][j+]!='.')fla=;
if(ch[i][j]==)ff=;
for(int w=ff;w<mx;w++){
val=f[now][w];
if(val==)continue;
x=getit(w,j+);y=getit(w,j+);
if(fla){
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
f[nex][z]+=val;
}
continue;
}
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
f[nex][z]+=val;
}
else if(x==||y==){
z=w+(x+y-x)*shu[j+]+(-y)*shu[j+];
f[nex][z]+=val;
z=w+(-x)*shu[j+]+(x+y-y)*shu[j+];
f[nex][z]+=val;
}
else if(x==y){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
int zz,zzz;
if(x==){
zz=-;zzz=j+;
while(zz!=){
++zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
else{
zz=;zzz=j+;
while(zz!=){
--zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
f[nex][z]+=val;
}
else if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
f[nex][z]+=val;
}
}
}
if(i==n)break;
now=i*m;nex=now+;
fla=;
if(ch[i+][]!='.')fla=;
if(ch[i][m]=='.')ff=;
for(int w=ff;w<mx;++w){
val=f[now][w];
if(val==)continue;
if(getit(w,m+)!=)continue;
x=getit(w,);
if(fla){
if(!x){
z=(w%shu[m+]-x)*; f[nex][z]+=val;
}
continue;
}
if(x==){
z=(w%shu[m+]-x)*;
z=z+;f[nex][z]+=val;
z=z+;f[nex][z]+=val;
}
else if(x==){
z=(w%shu[m+]-x)*++*;
f[nex][z]+=val;
}
}
}
printf("%lld\n",f[n*m-][shu[m]*+shu[m+]*]);
return ;
}

原代码

更改之后不开O2跑12*12的无障碍图需要快2s,大概是用map复杂度加了个log的锅……不想写hash……

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
#define LL long long
int n,m;
char ch[][]={};
int id[][]={};
int cun[][]={},tot[]={};
LL shu[]={};
map< int,LL >f[];
inline int getit(int z,int i){return (z/shu[i])%;}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%s",ch[i]+);
for(int i=;i<=n;i++)for(int j=;j<=m;j++)id[i][j]=(i-)*m+j;
shu[]=;
for(int i=;i<=m+;i++)shu[i]=shu[i-]*;
if(ch[][]=='.'){f[][+*]=;tot[]=;cun[][]=+*;}
else { f[][]=;tot[]=;cun[][]=;}
int now,nex,fla,z,x,y,id1,id2; LL val;
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
if(i==n&&j==m-)break;
now=id[i][j];nex=now+;fla=;
if(ch[i][j+]!='.')fla=;
id1=id[i][j]&;id2=id1^;
tot[id2]=;
for(int k=;k<=tot[id1];k++){
int w=cun[id1][k];
val=f[now][w];
if(val==)continue;
x=getit(w,j+);y=getit(w,j+);
if(fla){
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
continue;
}
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==||y==){
z=w+(x+y-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
z=w+(-x)*shu[j+]+(x+y-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==y){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
int zz,zzz;
if(x==){
zz=-;zzz=j+;
while(zz!=){
++zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
else{
zz=;zzz=j+;
while(zz!=){
--zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
}
}
if(i==n)break;
now=i*m;nex=now+;
fla=;
if(ch[i+][]!='.')fla=;
id1=id[i][m]&;id2=id1^;
tot[id2]=;
for(int k=;k<=tot[id1];++k){
int w=cun[id1][k];
val=f[now][w];
if(val==)continue;
if(getit(w,m+)!=)continue;
x=getit(w,);
if(fla){
if(!x){
z=(w%shu[m+]-x)*;
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
continue;
}
if(x==){
z=(w%shu[m+]-x)*;
z=z+; if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
z=z+; if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==){
z=(w%shu[m+]-x)*++*;
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
}
}
printf("%lld\n",f[n*m-][shu[m]*+shu[m+]*]);
return ;
}

去掉无用状态后

用map竟然过了……不过要注意一下最后输出的是最后一个可行位置的答案,很有可能最后一个点不是可行的,被坑了一下QAQ

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
#define LL long long
int n,m;
char ch[][]={};
int id[][]={};
int cun[][]={},tot[]={};
LL shu[]={};
map< int,LL >f[];
inline int getit(int z,int i){return (z/shu[i])%;}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%s",ch[i]+);
for(int i=;i<=n;i++)for(int j=;j<=m;j++)id[i][j]=(i-)*m+j;
int idx=,idy=;
for(int i=;i<=n;i++)for(int j=;j<=m;j++)if(ch[i][j]=='.'){idx=i;idy=j;}
if(idy<=){printf("0\n");return ;}
shu[]=;
for(int i=;i<=m+;i++)shu[i]=shu[i-]*;
if(ch[][]=='.'){f[][+*]=;tot[]=;cun[][]=+*;}
else { f[][]=;tot[]=;cun[][]=;}
int now,nex,fla,z,x,y,id1,id2; LL val;
for(int i=;i<=idx;i++){
for(int j=;j<m;j++){
if(i==n&&j==m-)break;
now=id[i][j];nex=now+;fla=;
if(ch[i][j+]!='.')fla=;
id1=id[i][j]&;id2=id1^;
tot[id2]=;
for(int k=;k<=tot[id1];k++){
int w=cun[id1][k];
val=f[now][w];
if(val==)continue;
x=getit(w,j+);y=getit(w,j+);
if(fla){
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
continue;
}
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==||y==){
z=w+(x+y-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
z=w+(-x)*shu[j+]+(x+y-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==y){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
int zz,zzz;
if(x==){
zz=-;zzz=j+;
while(zz!=){
++zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
else{
zz=;zzz=j+;
while(zz!=){
--zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
}
}
if(i==n)break;
now=i*m;nex=now+;
fla=;
if(ch[i+][]!='.')fla=;
id1=id[i][m]&;id2=id1^;
tot[id2]=;
for(int k=;k<=tot[id1];++k){
int w=cun[id1][k];
val=f[now][w];
if(val==)continue;
if(getit(w,m+)!=)continue;
x=getit(w,);
if(fla){
if(!x){
z=(w%shu[m+]-x)*;
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
continue;
}
if(x==){
z=(w%shu[m+]-x)*;
z=z+; if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
z=z+; if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==){
z=(w%shu[m+]-x)*++*;
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
}
}
printf("%lld\n",f[(idx-)*m+idy-][shu[idy]*+shu[idy+]*]);
return ;
}

这绝对是最后一版了

cnblog什么毛病啊……给代码加了标题如果要复制代码标题就到代码末尾了……mdzz

bzoj1814: Ural 1519 Formula 1 动态规划 插头dp的更多相关文章

  1. bzoj1814 Ural 1519 Formula 1(插头DP)

    对插头DP的理解还不是很透彻. 先说一下肤浅的理解吧. 插头DP使用范围:指数级复杂度,且适用于解决网格图连通性问题,如哈密顿回路等问题.插头一般指每相邻2个网格的接口. 题目难度:一般不可做. 使用 ...

  2. 插头DP讲解+[BZOJ1814]:Ural 1519 Formula 1(插头DP)

    1.什么是插头$DP$? 插头$DP$是$CDQ$大佬在$2008$年的论文中提出的,是基于状压$D$P的一种更高级的$DP$多用于处理联通问题(路径问题,简单回路问题,多回路问题,广义回路问题,生成 ...

  3. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

  4. URAL 1519 Formula 1(插头DP,入门题)

    Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...

  5. ural 1519 Formula 1(插头dp)

    1519. Formula 1 @ Timus Online Judge 干了一天啊!!!插头DP入门. 代码如下: #include <cstdio> #include <cstr ...

  6. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  7. URAL 1519 Formula 1 (插头DP,常规)

    题意:给一个n*m的矩阵,格子中是'*'则是障碍格子,不允许进入,其他格子都是必走的格子,所走格子形成一条哈密顿回路,问有多少种走法? 思路: 本来是很基础的题,顿时不知道进入了哪个坑.这篇插头DP的 ...

  8. bzoj 1814: Ural 1519 Formula 1【插头dp】

    设f[i][j][s]为轮廓线推到格子(i,j),状态为s的方案数 括号表示一段线的左端和右端,表示成左括号和右括号,状压的时候用1和2表示,0表示已经闭合 下面的蓝线是黄色格子的轮廓线,dp转移要把 ...

  9. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

随机推荐

  1. 【译】第十篇 Replication:故障排除

    本篇文章是SQL Server Replication系列的第十篇,详细内容请参考原文. 复制故障排除是一项艰巨的任务.在任何复制设置中,都涉及到很多移动部件,而可用的工具并不总是很容易识别问题.Th ...

  2. nginx+tomat https ssl 部署 完美解决方案

    关于nginx+tomcat https的部署之前网上一直有2种说法: 1.nginx和tomcat都要部署ssl证书 2.nginx部署ssl证书,tomcat增加ssl支持 在实际的部署过程中ng ...

  3. gnome桌面无法使用笔记本的触摸板

    原来使用ubuntu的时候,升级了gnome之后触摸板就不能用了,不能说不能用了,应该是自己不会配置然后不好用了,具体状况如是,可以在登录界面gdm使用触摸板以及点击,但是进入桌面之后就不能点击了.后 ...

  4. container_of分析【转】

    转自:http://blog.csdn.net/tigerjibo/article/details/8299589 1.container_of宏 1> Container_of在Linux内核 ...

  5. Mysql Limit操作

    oracle : ||   mysql: contact    contact_ws 拼接   Font Size: Large | Medium | Small select * from tabl ...

  6. redis tutorail

    命令 set     get    incr expire  秒  ttl    -1 不会过期 list  : lpush  rpush  lpop  rpop   lrange   llen se ...

  7. 向SQL Server 现有表中添加新列并添加描述.

    注: sql server 2005 及以上支持. 版本估计是不支持(工作环境2005,2008). 工作需要, 需要向SQL Server 现有表中添加新列并添加描述. 从而有个如下存储过程. (先 ...

  8. 触发器中的inserted表和deleted表

    触发器语句中使用了两种特殊的表:deleted 表和 inserted 表.Microsoft? SQL Server 2000 自动创建和管理这些表.可以使用这两个临时的驻留内存的表测试某些数据修改 ...

  9. 树莓派3B安装远程

    步骤1:树莓派3安装 RDP SERVER 及VNC SERVER sudo apt-get install -y tightvncserver sudo vncserver 最后才知道一定要加上VN ...

  10. 关于jedis2.4以上版本的连接池配置,及工具类

    jedis.propertise 注意以前版本的maxAcitve和maxWait有所改变,JVM根据系统环境变量ServerType中的值 取不同的配置,实现多环境(测试环境.生产环境)集成. re ...