http://acm.timus.ru/problem.aspx?space=1&num=1519

题目描述

一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数。

输入

The first line contains the integer numbers N and M (2 ≤ N, M ≤ 12). Each of the next N lines contains M characters, which are the corresponding cells of the rectangle. Character "." (full stop) means a cell, where a segment of the race circuit should be built, and character "*" (asterisk) - a cell, where a gopher hole is located.

输出

You should output the desired number of ways. It is guaranteed, that it does not exceed 2^63-1.

样例输入

4 4
**..
....
....
....

样例输出

2

直接写时间复杂度过不了,直接写了个dp里面有很多无用状态,剪枝一下(存下一个的有用状态)就行了。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
#define LL long long
int n,m;
char ch[][]={};
int id[][]={};
LL shu[]={};
map< int,LL >f[];
inline int getit(int z,int i){return (z/shu[i])%;}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%s",ch[i]+);
for(int i=;i<=n;i++)for(int j=;j<=m;j++)id[i][j]=(i-)*m+j;
shu[]=;int ff=;
for(int i=;i<=m+;i++)shu[i]=shu[i-]*;
if(ch[][]=='.'){f[][+*]=;ff=;}
else f[][]=;
int mx=shu[m+]*,now,nex,fla,z,x,y; LL val;
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
if(i==n&&j==m-)break;
now=id[i][j];nex=now+;fla=;
if(ch[i][j+]!='.')fla=;
if(ch[i][j]==)ff=;
for(int w=ff;w<mx;w++){
val=f[now][w];
if(val==)continue;
x=getit(w,j+);y=getit(w,j+);
if(fla){
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
f[nex][z]+=val;
}
continue;
}
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
f[nex][z]+=val;
}
else if(x==||y==){
z=w+(x+y-x)*shu[j+]+(-y)*shu[j+];
f[nex][z]+=val;
z=w+(-x)*shu[j+]+(x+y-y)*shu[j+];
f[nex][z]+=val;
}
else if(x==y){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
int zz,zzz;
if(x==){
zz=-;zzz=j+;
while(zz!=){
++zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
else{
zz=;zzz=j+;
while(zz!=){
--zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
f[nex][z]+=val;
}
else if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
f[nex][z]+=val;
}
}
}
if(i==n)break;
now=i*m;nex=now+;
fla=;
if(ch[i+][]!='.')fla=;
if(ch[i][m]=='.')ff=;
for(int w=ff;w<mx;++w){
val=f[now][w];
if(val==)continue;
if(getit(w,m+)!=)continue;
x=getit(w,);
if(fla){
if(!x){
z=(w%shu[m+]-x)*; f[nex][z]+=val;
}
continue;
}
if(x==){
z=(w%shu[m+]-x)*;
z=z+;f[nex][z]+=val;
z=z+;f[nex][z]+=val;
}
else if(x==){
z=(w%shu[m+]-x)*++*;
f[nex][z]+=val;
}
}
}
printf("%lld\n",f[n*m-][shu[m]*+shu[m+]*]);
return ;
}

原代码

更改之后不开O2跑12*12的无障碍图需要快2s,大概是用map复杂度加了个log的锅……不想写hash……

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
#define LL long long
int n,m;
char ch[][]={};
int id[][]={};
int cun[][]={},tot[]={};
LL shu[]={};
map< int,LL >f[];
inline int getit(int z,int i){return (z/shu[i])%;}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%s",ch[i]+);
for(int i=;i<=n;i++)for(int j=;j<=m;j++)id[i][j]=(i-)*m+j;
shu[]=;
for(int i=;i<=m+;i++)shu[i]=shu[i-]*;
if(ch[][]=='.'){f[][+*]=;tot[]=;cun[][]=+*;}
else { f[][]=;tot[]=;cun[][]=;}
int now,nex,fla,z,x,y,id1,id2; LL val;
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
if(i==n&&j==m-)break;
now=id[i][j];nex=now+;fla=;
if(ch[i][j+]!='.')fla=;
id1=id[i][j]&;id2=id1^;
tot[id2]=;
for(int k=;k<=tot[id1];k++){
int w=cun[id1][k];
val=f[now][w];
if(val==)continue;
x=getit(w,j+);y=getit(w,j+);
if(fla){
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
continue;
}
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==||y==){
z=w+(x+y-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
z=w+(-x)*shu[j+]+(x+y-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==y){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
int zz,zzz;
if(x==){
zz=-;zzz=j+;
while(zz!=){
++zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
else{
zz=;zzz=j+;
while(zz!=){
--zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
}
}
if(i==n)break;
now=i*m;nex=now+;
fla=;
if(ch[i+][]!='.')fla=;
id1=id[i][m]&;id2=id1^;
tot[id2]=;
for(int k=;k<=tot[id1];++k){
int w=cun[id1][k];
val=f[now][w];
if(val==)continue;
if(getit(w,m+)!=)continue;
x=getit(w,);
if(fla){
if(!x){
z=(w%shu[m+]-x)*;
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
continue;
}
if(x==){
z=(w%shu[m+]-x)*;
z=z+; if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
z=z+; if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==){
z=(w%shu[m+]-x)*++*;
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
}
}
printf("%lld\n",f[n*m-][shu[m]*+shu[m+]*]);
return ;
}

去掉无用状态后

用map竟然过了……不过要注意一下最后输出的是最后一个可行位置的答案,很有可能最后一个点不是可行的,被坑了一下QAQ

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
#define LL long long
int n,m;
char ch[][]={};
int id[][]={};
int cun[][]={},tot[]={};
LL shu[]={};
map< int,LL >f[];
inline int getit(int z,int i){return (z/shu[i])%;}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%s",ch[i]+);
for(int i=;i<=n;i++)for(int j=;j<=m;j++)id[i][j]=(i-)*m+j;
int idx=,idy=;
for(int i=;i<=n;i++)for(int j=;j<=m;j++)if(ch[i][j]=='.'){idx=i;idy=j;}
if(idy<=){printf("0\n");return ;}
shu[]=;
for(int i=;i<=m+;i++)shu[i]=shu[i-]*;
if(ch[][]=='.'){f[][+*]=;tot[]=;cun[][]=+*;}
else { f[][]=;tot[]=;cun[][]=;}
int now,nex,fla,z,x,y,id1,id2; LL val;
for(int i=;i<=idx;i++){
for(int j=;j<m;j++){
if(i==n&&j==m-)break;
now=id[i][j];nex=now+;fla=;
if(ch[i][j+]!='.')fla=;
id1=id[i][j]&;id2=id1^;
tot[id2]=;
for(int k=;k<=tot[id1];k++){
int w=cun[id1][k];
val=f[now][w];
if(val==)continue;
x=getit(w,j+);y=getit(w,j+);
if(fla){
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
continue;
}
if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==||y==){
z=w+(x+y-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
z=w+(-x)*shu[j+]+(x+y-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==y){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
int zz,zzz;
if(x==){
zz=-;zzz=j+;
while(zz!=){
++zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
else{
zz=;zzz=j+;
while(zz!=){
--zzz;
if(zzz>m+)break;
if(getit(w,zzz)==)--zz;
if(getit(w,zzz)==) ++zz;
}
if(zz!=)continue;
z=z+(-)*shu[zzz];
}
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==&&y==){
z=w+(-x)*shu[j+]+(-y)*shu[j+];
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
}
}
if(i==n)break;
now=i*m;nex=now+;
fla=;
if(ch[i+][]!='.')fla=;
id1=id[i][m]&;id2=id1^;
tot[id2]=;
for(int k=;k<=tot[id1];++k){
int w=cun[id1][k];
val=f[now][w];
if(val==)continue;
if(getit(w,m+)!=)continue;
x=getit(w,);
if(fla){
if(!x){
z=(w%shu[m+]-x)*;
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
continue;
}
if(x==){
z=(w%shu[m+]-x)*;
z=z+; if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
z=z+; if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
else if(x==){
z=(w%shu[m+]-x)*++*;
if(f[nex][z]==)cun[id2][++tot[id2]]=z;
f[nex][z]+=val;
}
}
}
printf("%lld\n",f[(idx-)*m+idy-][shu[idy]*+shu[idy+]*]);
return ;
}

这绝对是最后一版了

cnblog什么毛病啊……给代码加了标题如果要复制代码标题就到代码末尾了……mdzz

bzoj1814: Ural 1519 Formula 1 动态规划 插头dp的更多相关文章

  1. bzoj1814 Ural 1519 Formula 1(插头DP)

    对插头DP的理解还不是很透彻. 先说一下肤浅的理解吧. 插头DP使用范围:指数级复杂度,且适用于解决网格图连通性问题,如哈密顿回路等问题.插头一般指每相邻2个网格的接口. 题目难度:一般不可做. 使用 ...

  2. 插头DP讲解+[BZOJ1814]:Ural 1519 Formula 1(插头DP)

    1.什么是插头$DP$? 插头$DP$是$CDQ$大佬在$2008$年的论文中提出的,是基于状压$D$P的一种更高级的$DP$多用于处理联通问题(路径问题,简单回路问题,多回路问题,广义回路问题,生成 ...

  3. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

  4. URAL 1519 Formula 1(插头DP,入门题)

    Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...

  5. ural 1519 Formula 1(插头dp)

    1519. Formula 1 @ Timus Online Judge 干了一天啊!!!插头DP入门. 代码如下: #include <cstdio> #include <cstr ...

  6. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  7. URAL 1519 Formula 1 (插头DP,常规)

    题意:给一个n*m的矩阵,格子中是'*'则是障碍格子,不允许进入,其他格子都是必走的格子,所走格子形成一条哈密顿回路,问有多少种走法? 思路: 本来是很基础的题,顿时不知道进入了哪个坑.这篇插头DP的 ...

  8. bzoj 1814: Ural 1519 Formula 1【插头dp】

    设f[i][j][s]为轮廓线推到格子(i,j),状态为s的方案数 括号表示一段线的左端和右端,表示成左括号和右括号,状压的时候用1和2表示,0表示已经闭合 下面的蓝线是黄色格子的轮廓线,dp转移要把 ...

  9. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

随机推荐

  1. 【多视图几何】TUM 课程 第3章 透视投影

    课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4 .视频评论区可以找到课 ...

  2. JVM常用启动参数+常用内存调试工具

    一.JVM常用启动参数 -Xms:设置堆的最小值. -Xmx:设置堆的最大值. -Xmn:设置新生代的大小. -Xss:设置每个线程的栈大小. -XX:NewSize:设置新生代的初始值. -XX:M ...

  3. 获取SQL Server的版本信息

    微软 SQL Server 版本号 产品名称 发行日期 主版本号 正式版 SP1 SP2 SP3 SP4 SQL Server 2016 2016.06.01 13.00.1601.5 13.00.1 ...

  4. jQuery之字体大小的设置

    先获取字体大小,进行处理. 再将修改的值保存. slice() 方法可从已有的数组中返回选定的元素.arrayObject.slice(start,end).start     必需.规定从何处开始选 ...

  5. Emacs 启动优化二三事

    Emacs 启动优化二三事 */--> div.org-src-container { font-size: 85%; font-family: monospace; } p {font-siz ...

  6. Python的简单语法(一)

    import sys a=3 b=4 c=5.66 d=8.0 e=complex(c,d) f=complex(float(a),float(b)) print("a is type:&q ...

  7. wordpress后台进去空白怎么办?

    最近博客换成了用wordpress程序搭建,内容和版面也重新设计.经常使用FTP工具,更改模板或者其他程序文件.由于对wordpress不太了解,竟然出现了wordpress后台进去空白的问题,而前台 ...

  8. ***四种参数传递的形式——URL,超链接,js,form表单

    什么时候用GET,  查,删 什么时候用POST,增,改  (特列:登陆用Post,因为不能让用户名和密码显示在URL上) 4种get传参方式 <html xmlns="http:// ...

  9. 数据图表插件echarts(二)

    前言 上一篇文章简单介绍了一下百度公司前端部门写的一个js插件echarts,这是一款很强大的图表插件,里面的地图控件也是很强大的,支持离线的使用,并且数据也是离线的,使用很方便.下面我就简单介绍一下 ...

  10. Spark(十七)图计算GraphX

    一.图概念术语 1.1 基本概念 图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种数据结构. 这里的图并非指代数中的图.图可以对事物以及事物之间的关系建模,图可以用来表示自然发 ...