OJ题号:
  BZOJ1010

思路:
  斜率优化动态规划。
  由题意得状态转移方程为$f_i=\displaystyle{\min_{j=0}^{i-1}}\{f_j+\left(i-j-1+\displaystyle{\sum_{k=j+1}^i}c_k-L\right)^2\}$。
  用$a_i$表示$c_i$的前缀和,则原式为$f_i=\displaystyle{\min_{j=0}^{i-1}}\{f_j+\left(i-j-1+a_i-a_j-L\right)^2\}$。
  考虑现在有两个状态$j$和$k$都可以转移到$i$。
  假设$j$比$k$更优,则有:$f_j+\left(i-j-1+a_i-a_j-L\right)^2<f_k+\left(i-k-1+=a_i-a_k-L\right)^2$。
  将与$i$有关的项提取出来,设$x=i-1+a_i-L$。
  则原式变为$f_j+\left(x-j-a_j\right)^2<f_k+\left(x-k-a_k\right)^2$。
  化简得$f_j+\left(j+a_j\right)^2-f_k-\left(k+a_k\right)^2<2x(j+a_j-k-a_k)$。
  即$\frac{f_j+\left(j+a_j\right)^2-f_k-\left(k+a_k\right)^2}{(j+a_j-k-a_k)}<2x$。
  对于状态$j<k<l$,若要使$k$为一个有用的状态,则有$\frac{f_k+(k+a_k)^2-f_j-(j+a_j)^2}{2(k+a_k-j-a_j)}<x\leq\frac{f_l+(l+a_l)^2-f_k-(k+a_k)^2}{2(l+a_l-k-a_k)}$。
  然后我们可以维护一个单调队列,使队列中的相邻元素的斜率单调递增。
  每当插入一个元素时,我们比较队列前端两个元素的斜率是否小于$x$,如果是,则将第一个元素弹出队列。
  这时候队列前端的元素一定是最优的一个状态。
  然后尝试将这个元素加入队列,为了保证队列中相邻元素之间的斜率单调递增,每次比较队列后端两个元素的斜率$x1$和队列最末端元素与当前元素$i$的斜率$x2$。
  如果$x1>x2$,即新加入元素后不满足单调性,则将队列末端元素弹出。
  由于每个元素最多只会进队一次,最后的时间复杂度是$O(n)$的。

 #include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
int n,l,a[N]={},q[N]={},h=,t=;
long long f[N]={};
inline long long sqr(const long long x) {
return x*x;
}
inline double slope(const int &j,const int &k) {
return double(f[j]+sqr(j+a[j])-f[k]-sqr(k+a[k]))/double(j+a[j]-k-a[k]);
}
inline bool check(const int &i,const int &j,const int &k) {
return slope(k,j)>*(i+a[i]-l-);
}
inline bool check2(const int &i,const int &j,const int &k) {
return slope(j,i)<slope(k,j);
}
int main() {
n=getint(),l=getint();
for(register int i=;i<=n;i++) {
a[i]=a[i-]+getint();
while(h<t&&!check(i,q[h],q[h+])) h++;
const int &j=q[h];
f[i]=f[j]+sqr(i-j-+a[i]-a[j]-l);
while(h<t&&!check2(q[t-],q[t],i)) t--;
q[++t]=i;
}
printf("%lld\n",f[n]);
return ;
}

[HNOI2008]玩具装箱的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  4. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  5. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  8. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  9. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  10. cogs 1330 [HNOI2008]玩具装箱toy

    cogs 1330 [HNOI2008]玩具装箱toy 瞎扯,急忙AC的请跳过 感觉数据结构写的太多了有点晕=+ 发现还没学斜率优化+- 于是来学一学QwQ 上次这题打了个决策优化直接水过了..理论O ...

随机推荐

  1. input 标签禁止输入

    1.鼠标可以点击输入框,但是不能输入 readonly 例如: <input class="layui-input" readonly > 2.鼠标点击输入框出现禁用图 ...

  2. HTTP Headers解析

    什么是HTTP Headers? 它包含了哪些内容? 利用requests.get()函数对豆瓣读书进行请求, 返回的r.headers如下所示: >>> import reques ...

  3. android入门问题--R文件丢失

    链接   新手刚入门as,发现新创建的项目总是出错 Error:Execution failed for task ':app:mergeDebugResources'. > Error: ja ...

  4. MongoDB中多表关联查询(

    1.使用aggregate 查看表数据 db.getCollection('reports').aggregate([ { $lookup: { from: "process", ...

  5. LCT解读(1)

    蒟蒻的LCT解读(1) 前段时间本蒟蒻自学了一下LCT,但是网上的很多资料并不很全,而且作为一个数组选手,我看指针代码真的很麻烦,所以就在这里写一篇数组选手能看懂的代码. LCT的初步了解 LCT全称 ...

  6. 机器学习 Python实践-K近邻算法

    机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...

  7. 转58同城 mysql规范

    这里面都是一些很简单的规则,看似没有特别大的意义,但真实的不就是这么简单繁杂的工作吗? 军规适用场景:并发量大.数据量大的互联网业务 军规:介绍内容 解读:讲解原因,解读比军规更重要 一.基础规范 ( ...

  8. Spark-Streaming总结

    文章出处:http://www.cnblogs.com/haozhengfei/p/e353daff460b01a5be13688fe1f8c952.html Spark_总结五 1.Storm 和 ...

  9. IIS部署asp.net MVC 出现错误 403.14-Forbidden解决办法

    可能性一: <system.webServer>   <validationvalidateIntegratedModeConfiguration="false" ...

  10. 旁门左道通过JS与纯CSS实现显示隐藏层

    想必大家在开发前端页面时,肯定少不了显示隐藏层这一技术点.那么我简单粗暴地总结了以下两个小demo. 要实现该截图的功能:鼠标移动到我的好友这个选项卡时,灰色的隐藏层就会出现.