【眼见为实】自己动手实践理解数据库READ UNCOMMITED && SERIALIZABLE
我们自己通过Sql语句模拟场景来验证Mysql InnoDB引擎事务各级隔离级别对应封锁协议的工作机制。在开始实践之前我们需要做一些准备工作。
准备工作
①准备测试表和测试数据
需要建立一个测试数据表,建表语句:
create table users
(
id int auto_increment not null primary key,
name char(10) not null,
state int not null
);
然后插入一条测试数据:
insert into users values(1,'swj',0);
②关闭数据库事务自动提交
# 0为关闭 1为开启
SET autocommit = 0;
设置完成后我们可以通过下列语句查看是否关闭了自动提交。
show variables like 'autocommit';
OFF关闭无误。

③设置InnoDB存储引擎隔离级别
首先我们可以使用下面的语句分别查看数据库的系统级隔离级别和会话级隔离级别。
select @@global.tx_isolation,@@tx_isolation;

这也说明了MySql数据库默认使用的隔离级别是可重复读(REPEATABLE-READ)。
我们可以使用下面的语句设置隔离级别。隔离级别有READ UNCOMMITTED | **READ COMMITTED **| REPEATABLE READ | SERIALIZABLE四种。
SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL {READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE}
[READ UNCOMMITTED]
首先设置数据库隔离级别为读未提交(READ UNCOMMITTED):
set global transaction isolation level READ UNCOMMITTED ;
set session transaction isolation level READ UNCOMMITTED ;
[READ UNCOMMITTED]能解决的问题
我们来看一下为什么[READ UNCOMMITTED]能解决丢失更新的问题:
事务1:
START TRANSACTION;
① UPDATE users SET state=state+1 WHERE id=1;
② SELECT sleep(10);
COMMIT;
事务2:
START TRANSACTION;
① UPDATE users SET state=state+1 WHERE id=1;
COMMIT;
事务1先于事务2执行。
事务1的执行信息:
[SQL 1]START TRANSACTION;
受影响的行: 0
时间: 0.000s
[SQL 2]
UPDATE users SET state=state+1 WHERE id=1;
受影响的行: 1
时间: 0.001s
[SQL 3]
SELECT sleep(10);
受影响的行: 0
时间: 10.000s
[SQL 4]
COMMIT;
受影响的行: 0
时间: 0.068s
事务2的执行信息:
[SQL 1]START TRANSACTION;
受影响的行: 0
时间: 0.000s
[SQL 2]
UPDATE users SET state=state+1 WHERE id=1;
受影响的行: 1
时间: 8.787s
[SQL 3]
COMMIT;
受影响的行: 0
时间: 0.098s
执行结果:

结论:读未提交[READ UNCOMMITTED]隔离级别可以解决丢失更新的问题。
分析:因为读未提交[READ UNCOMMITTED]隔离级别对应数据库的一级封锁协议。一级封锁协议在修改数据之前对其加X锁,直到事务结束释放X锁。读数据不加锁。因为事务1先执行修改,修改前申请持有X锁,事务结束释放X锁。持锁时间段为[SQL 2]开始前到[SQL 4]结束,持锁时间大约为10.069s。事务2也执行修改操作,修改前也申请持有X锁。因为事务1执行更新操作等待10秒才会提交释放锁,所以事务2申请持锁需要等待,直到事务1结束才能获取到锁的持有权进行修改。事务2的执行信息中的[SQL 2]时间为8.787s(因为手速原因存在误差,实际应该为10秒左右)就能说明这一点。这样对同一数据的修改会变成串行化的修改,所以不会出现因为并发只进行一次+1的情况,也就不会出现丢失修改的问题。
[READ UNCOMMITTED]不能解决的问题
读未提交,顾名思义,一个事务可以读到另一个事务没有提交的内容,如果另一个事务进行回滚就会产生脏读。
我们来模拟一下脏读:
事务1:
START TRANSACTION;
① UPDATE users SET state=1 WHERE id=1;
② SELECT sleep(5);
ROLLBACK;
事务2:
START TRANSACTION;
① SELECT * FROM users WHERE id=1;
COMMIT;
事务1先于事务2执行。
事务1的执行信息:
[SQL 1]START TRANSACTION;
受影响的行: 0
时间: 0.000s
[SQL 2]
UPDATE users SET state=1 WHERE id=1;
受影响的行: 1
时间: 0.002s
[SQL 3]
SELECT sleep(5);
受影响的行: 0
时间: 5.000s
[SQL 4]
ROLLBACK;
受影响的行: 0
时间: 0.067s
事务2的执行信息:
[SQL 1]START TRANSACTION;
受影响的行: 0
时间: 0.001s
[SQL 2]
SELECT * FROM users WHERE id=1;
受影响的行: 0
时间: 0.001s
[SQL 3]
COMMIT;
受影响的行: 0
时间: 0.000s
事务2的执行结果:

事务1和事务2都执行结束时,再进行一次查询的结果:

结论:读未提交[READ UNCOMMITTED]隔离级别解决不了脏读的问题,更解决不了不可重复读的问题。
分析:因为读未提交[READ UNCOMMITTED]隔离级别对应数据库的一级封锁协议。一级封锁协议在修改数据之前对其加X锁,直到事务结束释放X锁。读数据不加锁。因为事务1先执行修改,修改前申请持有X锁,持锁时间段为[SQL 2]开始前到[SQL 4]结束,持锁时间大约为5.069s。事务2执行读操作,不需要申请持锁,而是直接去磁盘读取数据。读取出的数据是事务1修改后的,而此时事务1回滚,修改的数据被还原,就产生了脏读现象。
[SERIALIZABLE]
这个级别的封锁就很好理解了,读加共享锁,写加排他锁,读写互斥。使用的悲观锁的理论,所有操作串行化执行,数据更加安全,但是并发能力非常差。如果你的业务并发的特别少或者没有并发,同时又要求数据及时可靠的话,可以使用这种模式。
我们重点探究的不是[READ UNCOMMITTED]和[SERIALIZABLE]级别,而是[READ COMMITTED]和[REPEATABLE READ]。如果您对此感兴趣可以看一下后两篇博客。
本文为博主学习感悟总结,水平有限,如果不当,欢迎指正。
如果您认为还不错,不妨点击一下下方的[【推荐】](javascript:void(0)
【眼见为实】自己动手实践理解数据库READ UNCOMMITED && SERIALIZABLE的更多相关文章
- 【眼见为实】自己动手实践理解数据库REPEATABLE READ && Next-Key Lock
[REPEATABLE READ] 首先设置数据库隔离级别为可重复读(REPEATABLE READ): set global transaction isolation level REPEATAB ...
- 【眼见为实】自己动手实践理解数据库READ COMMITTED && MVCC
[READ COMMITTED] 首先设置数据库隔离级别为读已提交(READ COMMITTED): set global transaction isolation level READ COMMI ...
- 【眼见为实】自己动手实践理解REPEATABLE READ && Next-Key Lock
首先设置数据库隔离级别为可重复读(REPEATABLE READ): set global transaction isolation level REPEATABLE READ ; set sess ...
- 【眼见为实】自己动手实践理解READ COMMITTED && MVCC
[眼见为实]自己动手实践理解 READ COMMITTED && MVCC 首先设置数据库隔离级别为读已提交(READ COMMITTED): set global transacti ...
- [转帖]Docker从入门到动手实践
Docker从入门到动手实践 https://www.cnblogs.com/nsky/p/10853194.html dockerfile的图很好呢. 但是自己没有做实验 , 其实知识都挺好. do ...
- 【原创 Hadoop&Spark 动手实践 8】Spark 应用经验、调优与动手实践
[原创 Hadoop&Spark 动手实践 7]Spark 应用经验.调优与动手实践 目标: 1. 了解Spark 应用经验与调优的理论与方法,如果遇到Spark调优的事情,有理论思考框架. ...
- 【原创 Hadoop&Spark 动手实践 9】Spark SQL 程序设计基础与动手实践(上)
[原创 Hadoop&Spark 动手实践 9]SparkSQL程序设计基础与动手实践(上) 目标: 1. 理解Spark SQL最基础的原理 2. 可以使用Spark SQL完成一些简单的数 ...
- 【原创 Hadoop&Spark 动手实践 10】Spark SQL 程序设计基础与动手实践(下)
[原创 Hadoop&Spark 动手实践 10]Spark SQL 程序设计基础与动手实践(下) 目标: 1. 深入理解Spark SQL 程序设计的原理 2. 通过简单的命令来验证Spar ...
- 【原创 Hadoop&Spark 动手实践 6】Spark 编程实例与案例演示
[原创 Hadoop&Spark 动手实践 6]Spark 编程实例与案例演示 Spark 编程实例和简易电影分析系统的编写 目标: 1. 掌握理论:了解Spark编程的理论基础 2. 搭建 ...
随机推荐
- C/C++ -- Gui编程 -- Qt库的使用 -- 信号与槽 -- 欢迎界面
程序运行先显示一个对话框,确定进入主程序 1.新建Qt工程,类MyWidget,基类QWidget 2.新建设计师界面类MyDialog,基类QDialog 3.-----main.cpp----- ...
- 前端h5遇到的问题及解决办法
以后遇到的问题都记录在这里. 1.由于先有的pc端后需求手机端,所以没有用框架做适配,而是手动媒体查询进行手机端.pad.pc 三端适配,界面比较简单,所以这么做也不复杂,就是坑比较多. 2.移动和p ...
- 一个非常好用的图片切割工具(c# winform开发)
本人业余时间开发了一个图片切割工具,非常好用,也很灵活! 特别对大型图片切割,更能体现出该软件的优势! 功能说明 可以设定切割的高度和宽度.切割线可以上下拖动,可以增加一个切割区域,可设定某个区域不参 ...
- InterView之PHP(2)
PHP 理论知识 常用的超全局变量(8个) $_GET ----->get传送方式 $_POST ----->post传送方式 $_REQUEST ----->可以接收到get和po ...
- struct in_addr 结构体
struct in_addr 结构体: struct in_addr { in_addr_t s_addr; }; 表示一个32位的IPv4地址. in_addr_t一般为32位的unsigned i ...
- Node.js处理I/O数据之Buffer模块缓冲数据
一.前传 在之前做web时也经常用到js对象转json和json转js对象.既然是Node.js处理I/O数据,也把这个记下来. Json转Js对象:JSON.parse(jsonstr); //可以 ...
- Extjs相关知识点梳理
store是一个为Ext器件提供record对象的存储容器,行为和属性都很象数据表 方法:不列举继承来的方法 Store( Object config ) 构造,config定义为{ autoLo ...
- c# winform项目用到的部分知识点总结
项目用到的知识点总结,欢迎大家吐槽: /// <summary> /// 转换非yyyy-MM-dd的字符串为DateTime类型 /// </summary> public ...
- 上传多张图片imgupload
<tr> <td class="listtitle-up">尿素箱</td> <td> <div class="co ...
- ASP.NET Core2,通过反射批量注入程序集
public void ConfigureServices(IServiceCollection services) { string strValue = Con ...