题目链接

Problem Description

The Gorelians are a warlike race that travel the universe conquering new worlds as a form of recreation. Given their violent, fun-loving nature, keeping their leaders alive is of serious concern. Part of the Gorelian security plan involves changing the traffic patterns of their cities on a daily basis, and routing all Gorelian Government Officials to the Government Building by the fastest possible route.

Fortunately for the Gorelian Minister of Traffic (that would be you), all Gorelian cities are laid out as a rectangular grid of blocks, where each block is a square measuring 2520 rels per side (a rel is the Gorelian Official Unit of Distance). The speed limit between two adjacent intersections is always constant, and may range from 1 to 9 rels per blip (a blip, of course, being the Gorelian Official Unit of Time). Since Gorelians have outlawed decimal numbers as unholy (hey, if you're the dominant force in the known universe, you can outlaw whatever you want), speed limits are always integer values. This explains why Gorelian blocks are precisely 2520 rels in length: 2520 is the least common multiple of the integers 1 through 9. Thus, the time required to travel between two adjacent intersections is always an integer number of blips.

In all Gorelian cities, Government Housing is always at the northwest corner of the city, while the Government Building is always at the southeast corner. Streets between intersections might be one-way or two-way, or possibly even closed for repair (all this tinkering with traffic patterns causes a lot of accidents). Your job, given the details of speed limits, street directions, and street closures for a Gorelian city, is to determine the fastest route from Government Housing to the Government Building. (It is possible, due to street directions and closures, that no route exists, in which case a Gorelian Official Temporary Holiday is declared, and the Gorelian Officials take the day off.)

The picture above shows a Gorelian City marked with speed limits, one way streets, and one closed street. It is assumed that streets are always traveled at the exact posted speed limit, and that turning a corner takes zero time. Under these conditions, you should be able to determine that the fastest route from Government Housing to the Government Building in this city is 1715 blips. And if the next day, the only change is that the closed road is opened to two way traffic at 9 rels per blip, the fastest route becomes 1295 blips. On the other hand, suppose the three one-way streets are switched from southbound to northbound (with the closed road remaining closed). In that case, no route would be possible and the day would be declared a holiday.

Input

The input consists of a set of cities for which you must find a fastest route if one exists. The first line of an input case contains two integers, which are the vertical and horizontal number of city blocks, respectively. The smallest city is a single block, or 1 by 1, and the largest city is 20 by 20 blocks. The remainder of the input specifies speed limits and traffic directions for streets between intersections, one row of street segments at a time. The first line of the input (after the dimensions line) contains the data for the northernmost east-west street segments. The next line contains the data for the northernmost row of north-south street segments. Then the next row of east-west streets, then north-south streets, and so on, until the southernmost row of east-west streets. Speed limits and directions of travel are specified in order from west to east, and each consists of an integer from 0 to 9 indicating speed limit, and a symbol indicating which direction traffic may flow. A zero speed limit means the road is closed. All digits and symbols are delimited by a single space. For east-west streets, the symbol will be an asterisk '*' which indicates travel is allowed in both directions, a less-than symbol '<' which indicates travel is allowed only in an east-to-west direction, or a greater-than symbol '>' which indicates travel is allowed only in a west-to-east direction. For north-south streets, an asterisk again indicates travel is allowed in either direction, a lowercase "vee" character 'v' indicates travel is allowed only in a north-to-south directions, and a caret symbol '^' indicates travel is allowed only in a south-to-north direction. A zero speed, indicating a closed road, is always followed by an asterisk. Input cities continue in this manner until a value of zero is specified for both the vertical and horizontal dimensions.

Output

For each input scenario, output a line specifying the integer number of blips of the shortest route, a space, and then the word "blips". For scenarios which have no route, output a line with the word "Holiday".

Sample Input

2 2

9 * 9 *

6 v 0 * 8 v

3 * 7 *

3 * 6 v 3 *

4 * 8 *

2 2

9 * 9 *

6 v 9 * 8 v

3 * 7 *

3 * 6 v 3 *

4 * 8 *

2 2

9 * 9 *

6 ^ 0 * 8 ^

3 * 7 *

3 * 6 ^ 3 *

4 * 8 *

0 0

Sample Output

1715 blips

1295 blips

Holiday

分析:

有个n*m大小的矩形,起点在矩形的左上角, 终点在右下角, 里面一个小矩形代表一个街区(block)。

每个小矩形的边长都是2520, 小矩形的边有一个速度限制,范围是0~9, 如果是0表示这条边不能行驶。

关于输入部分,由上到下,从左到右,按照上图的对应的位置方式给出数据,

每一条边是 "数字"+“空格”+“符号”的形式,

数字表示这条边的限速,符号表示这条路是单向(还分东西, 南北)的还是双向的。

其实主旨思想就是在求一个最从左上角到右下角的最短路,关键就在于确定每一个点对应的编号,以及每一条路所对应的起点和终点。

每行输入的奇数行肯定是表示的横向的路径,路径条数就是列数,偶数行表示的是竖向的路径,路径条数就是列数+1,这些就没必要解释了把。

然后是确定每一个点所对应的编号:

对于横向的路径,第i行的第j个点所对应的编号就是(m+1)(i/2)+j,所连接的另一个点编号就是该点的编号加1、减1

而对于纵向的路径,第i行的第j个点所对应的编号就是(m+1)
(i/2-1)+j,所连接的另一个点编号就是该点的编号加m、减m。

这样就完全把路径给保存下来了。

代码:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<queue>
#include<utility>
using namespace std;
const int INF = 0x3f3f3f3f;
int n,m,u,w;
int num;//一共涉及到的点的数目
char str[150];
const int vNum=445;
const int eNum=vNum*vNum/2;
int Count;
typedef pair<int,int>pii;
struct Node
{
int to,val;
int Next;
}node[eNum];
int head[vNum];
int dis[vNum];
struct Node1
{
int len,num;
};
void add(int u,int v,int w)
{
node[Count].to=v;
node[Count].val=w;
node[Count].Next=head[u];
head[u]=Count;
Count++;
}
void spfa(int src)
{
for(int i=1;i<=num;i++)
dis[i]=INF;
dis[src]=0;
queue<Node1>q;
Node1 Now,Next;
Now.len=dis[src];
Now.num=src;
q.push(Now);
while(!q.empty())
{
Now=q.front();
q.pop();
int u=Now.num;//得到点
if(dis[u]!=Now.len)continue;
for(int i=head[u];i!=-1;i=node[i].Next)
{
int v=node[i].to;
int temp=dis[u]+node[i].val;
if(dis[v]>temp)
{
dis[v]=temp;
Next.len=dis[v];
Next.num=v;
q.push(Next);
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m)&&n&&m)
{
getchar();
Count=0;
num=(n+1)*(m+1);//最后一个点的标号
memset(head,-1,sizeof(head));
for(int i=1; i<=2*n+1; i++)//对于n行的图形,那么一共需要输入的路径就有2*n+1行
{
gets(str);
int len=strlen(str);
if(i&1)//输入的是行的信息
{
for(int j=0,k=1; j<len; j+=4,k++) //数字、空格、方向、空格四个一个循环
{
u=(m+1)*(i/2)+k;//一个点对应的一个编号
w=str[j]-'0';//获得速度
if(w==0) continue;
if(str[j+2]=='*')//双向的
{
add(u,u+1,2520/w);
add(u+1,u,2520/w);
}
else if(str[j+2]=='<')//单向的从右到左
{
add(u+1,u,2520/w);
}
else//单向的从左到右
{
add(u,u+1,2520/w);
}
}
}
else//输入的是列的信息
{
for(int j=0,k=1; j<len; j+=4,k+=1)
{
u=(m+1)*(i/2-1)+k;//每次上面的那个点代表的数字
w=str[j]-'0';
if(w==0)continue;
if(str[j+2]=='*')//双向的
{
add(u,u+m+1,2520/w);
add(u+m+1,u,2520/w);
}
else if(str[j+2]=='v')//从上到下
{
add(u,u+m+1,2520/w);
}
else if(str[j+2]=='^')//从下到上
{
add(u+m+1,u,2520/w);
}
}
}
}
spfa(1);
if(dis[num]!=INF)
printf("%d blips\n",dis[num]);
else
printf("Holiday\n");
}
return 0;
}

HDU 2722 Here We Go(relians) Again (最短路)的更多相关文章

  1. POJ 3653 &amp; ZOJ 2935 &amp; HDU 2722 Here We Go(relians) Again(最短路dijstra)

    题目链接: PKU:http://poj.org/problem? id=3653 ZJU:problemId=1934" target="_blank">http ...

  2. HDU 2722 Here We Go(relians) Again (spfa)

    Here We Go(relians) Again Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/ ...

  3. hdu 2722 Here We Go(relians) Again (最短路径)

    Here We Go(relians) Again Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  4. HDU 2722 Here We Go(relians) Again

    最短路,建图太麻烦,略过…… #include <cstdio> #include <cstring> #include <queue> const int INF ...

  5. 【HDOJ】2722 Here We Go(relians) Again

    根据矩阵建图,然后求最短路径. #include <cstdio> #include <cstring> #include <cstdlib> #define L ...

  6. hdu 5545 The Battle of Guandu spfa最短路

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5545 题意:有N个村庄, M 个战场: $ 1 <=N,M <= 10^5 $; 其中曹 ...

  7. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  8. hdu - 2586 How far away ?(最短路共同祖先问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 最近公共祖先问题~~LAC离散算法 题目大意:一个村子里有n个房子,这n个房子用n-1条路连接起 ...

  9. HDU 6071 Lazy Running (同余最短路 dij)

    Lazy Running Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)To ...

随机推荐

  1. 移动web适配利器-rem

    移动web适配利器-rem 前言 提到rem,大家首先会想到的是em,px,pt这类的词语,大多数人眼中这些单位是用于设置字体的大小的,没错这的确是用来设置字体大小的,但是对于rem来说它可以用来做移 ...

  2. laravel中的Contracts, ServiceContainer, ServiceProvider, Facades关系

    Contracts, ServiceContainer, ServiceProvider, Facades  Contracts 合同,契约,也就是接口,定义一些规则,每个实现此接口的都要实现里面的方 ...

  3. (转)web性能优化

    前端是庞大的,包括 HTML. CSS. Javascript.Image .Flash等等各种各样的资源.前端优化是复杂的,针对方方面面的资源都有不同的方式.那么,前端优化的目的是什么 ? 1. 从 ...

  4. Python fullstack系列【1】:初识Python

    Python简介 Python的前世今生: Python诞生于1989年的圣诞节期间,其作者是吉多·范罗苏姆(Guido van Rossum).当时Guido(江湖人称龟叔)在阿姆斯特丹度假时着手开 ...

  5. 【jQuery插件】pagepiling滚屏插件使用

    pagePiling.js 这款 jQuery 插件可以帮助前端开发人员轻松实现全屏滚动效果. 支持所有的主流浏览器,包括IE8+,支持移动设备.下面详细讲解下pagePiling.js的使用步骤. ...

  6. ASP.NET MVC中在 @RenderBody() 或者 @Html.Partial()中需要使用引入外部js,css

    今天想在后台封装一下bootstraptree这个插件,引入jquery.js bootstrap.js bootstrap.css bootstrap-tree.js后,我在页面查看脚本错误就连最简 ...

  7. UVA11624_Fire!

    在一个矩形方阵里面,一个人要从一个位置走向另一个位置,其中某些地方有火源,每过一分钟,火源就会点燃相邻的点,同时相邻的点也变成了火源.人不能通过有火的点.问一个人能够安全地走到目的地去?最短时间多少? ...

  8. python参数传递方式

    原文地址:http://www.cnblogs.com/zhaopengcheng/p/5492183.html python中一切皆对象,函数中参数传递的是对象的引用. 1在函数中改变变量指向的对象 ...

  9. [AT2384] [agc015_f] Kenus the Ancient Greek

    题目链接 AtCoder:https://agc015.contest.atcoder.jp/tasks/agc015_f 洛谷:https://www.luogu.org/problemnew/sh ...

  10. 【BZOJ3534】重建(矩阵树定理)

    [BZOJ3534]重建(矩阵树定理) 题面 BZOJ 洛谷 题解 这.... 矩阵树定理神仙用法???? #include<iostream> #include<cmath> ...