【BZOJ1045】糖果传递(贪心)

题面

BZOJ

洛谷

题解

秉承者娱乐精神,我们必须写一个费用流,并且相信信仰跑不过去。

于是写了一个\(zkw\)费用流如下:(您可以无视此份代码)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1000100
#define inf 1000000000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,a[MAX];
struct Line{int v,next,w,fy;}e[8000010];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w,int fy)
{
e[cnt]=(Line){v,h[u],w,fy};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0,-fy};h[v]=cnt++;
}
bool vis[MAX];
int S,T;
ll dis[MAX];
bool SPFA(int S,int T)
{
for(int i=T;i<=S;++i)vis[i]=0,dis[i]=1e18;
queue<int> Q;Q.push(S);
dis[S]=0;vis[S]=true;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
if(!e[i^1].w)continue;
int v=e[i].v;
if(dis[v]>dis[u]-e[i].fy)
{
dis[v]=dis[u]-e[i].fy;
if(!vis[v])vis[v]=true,Q.push(v);
}
}
vis[u]=false;
}
if(dis[T]>=1e18)return false;
return true;
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0;vis[u]=true;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(!vis[v]&&e[i].w&&dis[v]==dis[u]-e[i].fy)
{
int d=dfs(v,min(flow,e[i].w));
e[i].w-=d;e[i^1].w+=d;flow-=d;ret+=d;
if(!flow)break;
}
}
return ret;
}
int main()
{
n=read();S=0;T=n+1;ll sum=0,ans=0;
for(int i=1;i<=n;++i)sum+=(a[i]=read());sum/=n;
for(int i=1;i<=n;++i)Add(S,i,a[i],0);
for(int i=1;i<=n;++i)Add(i,T,sum,0);
for(int i=1;i<n;++i)Add(i,i+1,inf,1),Add(i+1,i,inf,1);
Add(1,n,inf,1);Add(n,1,inf,1);
while(SPFA(T,S))ans+=1ll*dis[S]*dfs(S,inf);
printf("%lld\n",ans);
return 0;
}

似乎跑偏了。我们正常点。

我们设\(s[i]\)表示第\(i\)个点要给第\(i-1\)个点的糖果数,

答案\(ans=\sum |s[i]|\)

然后对于每个点,我们知道它最终的值,那么可以列出若干方程,

形如\(s[i+1]-s[i]+a[i]=averge\)

所以可以用\(s[1]\)来表示其他所有的值。

那么再套上绝对值,变成了找中位数的问题。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 1000100
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,a[MAX];
ll s[MAX];
int main()
{
n=read();ll sum=0,ans=0;
for(int i=1;i<=n;++i)sum+=(a[i]=read());sum/=n;
for(int i=1;i<=n;++i)s[i]=s[i-1]-a[i]+sum;
sort(&s[1],&s[n+1]);
for(int i=1;i<=n;++i)ans+=abs(s[i]-s[n/2]);
printf("%lld\n",ans);
return 0;
}

【BZOJ1045】糖果传递(贪心)的更多相关文章

  1. 【BZOJ1045】[HAOI2008] 糖果传递 贪心

    [BZOJ1045][HAOI2008] 糖果传递 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正 ...

  2. 【数学】【HAOI2008】【BZOJ1045糖果传递】【BZOJ3293分金币】论数学的重要性

    BZOJ1045和BZOJ3293一模一样两道题,在这里我用1045来讲. 1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MB ...

  3. bzoj1045 糖果传递

    escription 老师准备了一堆糖果, 恰好n个小朋友可以分到数目一样多的糖果. 老师要n个小朋友去拿糖果, 然后围着圆桌坐好, 第1个小朋友的左边是第n个小朋友, 其他第i个小朋友左边是第i-1 ...

  4. BZOJ-1045 糖果传递 数学+递推

    1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2975 Solved: 1327 [Submit][Sta ...

  5. bzoj 1045: [HAOI2008] 糖果传递 贪心

    1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1812  Solved: 846[Submit][Stat ...

  6. [BZOJ1045] [HAOI2008] 糖果传递 (贪心)

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n<=,表示小朋友的个数.接下来n行,每行 ...

  7. Luogu-P2512 [HAOI2008]糖果传递 贪心

    传送门:https://www.luogu.org/problemnew/show/P2512 题意: 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1 ...

  8. bzoj 1045 [HAOI2008] 糖果传递 —— 贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1045 好像是贪心...但这是一个环... 看博客:http://hzwer.com/2656 ...

  9. 【BZOJ1045】[HAOI2008]糖果传递

    [BZOJ1045][HAOI2008]糖果传递 题面 bzoj 洛谷 题解 根据题意,我们可以很容易地知道最后每个人的糖果数\(ave\) 设第\(i\)个人给第\(i-1\)个人\(X_i\)个糖 ...

随机推荐

  1. shentou mianshiti

    给你一个网站你是如何来渗透测试的? 在获取书面授权的前提下.1)信息收集,1,获取域名的whois信息,获取注册者邮箱姓名电话等.2,查询服务器旁站以及子域名站点,因为主站一般比较难,所以先看看旁站有 ...

  2. Kafka发送到分区的message是否是负载均衡的?

    首先说结论,是负载均衡的.也就是说,现在有一个producer,向一个主题下面的三个分区发送message,没有指定具体要发送给哪个partition, 这种情况,如果是负载均衡的,发送的消息应该均匀 ...

  3. python虚拟环境管理之virtualenv,virtualenvwrapper,pipenv,conda

    虚拟环境的作用 使python环境拥有独立的包,避免污染原本的python环境.为不同的项目创建不同的环境可以避免安装的库过于庞大和相互干扰. 例如你想在同一台机器上开发用python2和python ...

  4. centos7以上安装python3,一条命令搞定。

    直接复制下面的命令就搞定 yum install python34 python34-pip python34-setuptools 使用方法: python3 ---.py pip3 install ...

  5. Codeforces Round #515 (Div. 3) 解题报告(A~E)

    题目链接:http://codeforces.com/contest/1066 1066 A. Vova and Train 题意:Vova想坐火车从1点到L点,在路上v的整数倍的点上分布着灯笼,而在 ...

  6. Django数据库 相关之select_related/prefetch_related

    - 性能相关 user_list = models.UserInfo.objects.all() for row in user_list: # 只去取当前表数据 select_related,主动连 ...

  7. Redis学习(一):CentOS下redis安装和部署

    1.基础知识  redis是用C语言开发的一个开源的高性能键值对(key-value)数据库.它通过提供多种键值数据类型来适应不同场景下的存储需求,目前为止redis支持的键值数据类型如下字符串.列表 ...

  8. js备忘录2

    JavaScript 的类型分为两类,分别是原始类型和对象类型 其中原始类型中只有数字.字符串和布尔型,和java中的有些不一样 null和undefined不是基本数据类型中的某一种 对象是prop ...

  9. 第一次作业——MathExam285

    MathExam285 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 • Estimate ...

  10. 实验五Java网络编程及安全——20135337朱荟潼

    实验五 Java网络编程及安全 结对伙伴:20135317韩玉琪(负责服务器方)http://www.cnblogs.com/hyq20135317/p/4567241.html 实验内容 1.掌握S ...