一. apply函数

作用:对 DataFrame 的某行/列应用函数之后,Apply 返回一些值。函数既可以使用默认的,也可以自定义。注意:在第二个输出中应用 head() 函数,因为它包含了很多行。

#创建一个新函数
def num_missing(x):
return sum(x.isnull()) #应用每一列
print "Missing values per column:"
print data.apply(num_missing, axis=0) #axis=0 defines that function is to be applied on each column #应用每一行
print "\nMissing values per row:"
print data.apply(num_missing, axis=1).head() #axis=1 defines that function is to be applied on each row

二. loc函数

作用:选择属性子集

subSalesDf=salesDf.loc[0:4,'购药时间':'销售数量']

三. rename函数

作用:列重命名

colNameDict = {'购药时间':'销售时间'}                  #将‘购药时间’改为‘销售时间’
salesDf.rename(columns = colNameDict,inplace=True)

四. dropna函数

作用:删除缺失值,how='any'意为在给定的任何一列中有缺失值就删除

salesDf=salesDf.dropna(subset=['销售时间','社保卡号'],how='any') #删除列(销售时间,社保卡号)中为空的行

五. pd.to_datetime函数

作用:字符串类型的数据转换成日期格式。传入的格式是原始数据的日期格式——format='%Y-%m-%d'固定写法:Y表示年、m表示月、d表示日。

salesDf.loc[:,'销售时间']=pd.to_datetime(salesDf.loc[:,'销售时间'],
format='%Y-%m-%d',
errors='coerce')

errors='coerce': 如果原始数据不符合日期的格式,转换后的值为空值NaT。所以转换之后我们还要运行一次删除空值的代码,因为不符合格式的日期被转变为了空值需要删除。

salesDf=salesDf.dropna(subset=['销售时间','社保卡号'],how='any')

六.  pd.sort_values

作用:对数据进行排序,by表示按那几列进行排序,ascending=True 表示升序排列,ascending=False表示降序排列

salesDf=salesDf.sort_values(by='销售时间',     #按销售日期进行升序排列
ascending=True)

七. reset_index函数

作用:生成从0到N按顺序的索引值

salesDf=salesDf.reset_index(drop=True)

八. describe函数

作用:查看数据框中所有数据每列的描述统计信息:(count:总数,mean:平均数,std:标准差,min:最小值,25%:下四分位数,50%:中位数,75%:上四分位数,max:最大值)

salesDf.describe()

九. 删除异常值

作用:假设最小值出现了小于0的情况,分析应该是记录过程中出现错误所致。

第一步:设置查询条件,这一步返回True和false

querySer=salesDf.loc[:,'销售数量']>0

第二步:应用查询条件

salesDf=salesDf.loc[querySer,:]

十. drop_duplicates函数

作用:将重复的数据删除,同一个人发生的所有消费算作一次消费,根据列名(销售时间,社区卡号),如果这两个列值同时相同,只保留1条

kpi1_Df=salesDf.drop_duplicates(
subset=['销售时间', '社保卡号']
)

十一. groupby

作用:根据某一列分组

gb=groupDf.groupby(groupDf.index.month)

对分组后的数据应用函数

mounthDf=gb.sum()

十二. 不适=使用for循环的列表生成器

作用:当一个列表中的元素是由另外一个列表中对应元素经过运算得到时,可以省去for循环,适用一行代码生成模型

x = [2,3,4,5]
out = [item*2 for item in x]
print(out)

十三. Lambda 表达式

作用:不使用def关键字,也没有return。Lambda 表达式创造的函数和普通的 def 构建的函数没什么不同,只不过函数体只有单独一个表达式而已。

double=lambda x: x*2 #double是函数名,x是参数
print(double(3))

十四. map 和 filter 函数

1. map

作用:可以与Lambda表达式同时使用,map() 函数接收一个列表,和一个函数(可以是Lambda表达式),它对列表里的每个元素调用一个函数进行处理,再将结果放进一个新列表里。

result=list(map(double,x))
print(result)

2. filter

作用:它接收一个列表,和一个规则函数,在对列表里的每个元素调用这个规则函数之后,它把所有返回值为假的元素从列表中剔除,然后返回这个过滤后的子列表。

result2=list(filter(lambda a:a>4,x))

十五. arrange 函数

作用:arange() 函数按照指定的步长返回一个等差数列。除开始和结束值之外,你还可以自定义步长和数据类型。请注意,给定的结束值参数是不会被包含在结果内的。

result= np.arange(start,stop,step)

十六. linspace 函数

作用:将给定区间进行若干等分以后的等分点组成的数列。所以你传入的参数包括开始值、结束值,以及具体多少等分。linspace() 将这个区间进行等分后,把开始值、结束值和每个等分点都放进一个 NumPy 数组里。这在做数据可视化以及绘制坐标轴的时候都很有用。

result4=np.linspace(2.0,3.0,num=5)

十七. 矩阵合并函数

1.Concat

作用:把一个或多个数据表按行(或列)的方向简单堆叠起来(看你传入的 axis 参数是 0 还是 1 咯)。

2. merge

作用:merge() 将会以用户指定的某个名字相同的列为主键进行对齐,把两个或多个数据表融合到一起。

3. join

join()和 merge() 很相似,只不过 join() 是按数据表的索引进行对齐,而不是按某一个相同的列。当某个表缺少某个索引的时候,对应的值为空(NaN)。

十八. pivot_table 函数

作用:它能帮你对一个数据表进行格式化,并输出一个像 Excel 工作表一样的表格。实际使用中,透视表将根据一个或多个键对数据进行分组统计,将函数传入参数 aggfunc 中,数据将会按你指定的函数进行统计,并将结果分配到表格中。

pivot_table(data, values=None, index=None, columns=None,aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

python中数据分析常用函数整理的更多相关文章

  1. Python 学习:常用函数整理

    整理Python中常用的函数 一,把字符串形式的list转换为list 使用ast模块中的literal_eval函数来实现,把字符串形式的list转换为Python的基础类型list from as ...

  2. python中math常用函数

    python中math的使用 import math #先导入math包 1 三角函数 print math.pi #打印pi的值 3.14159265359 print math.radians(1 ...

  3. Python中关于Lambda函数的使用总结

    lambda表达式是一种匿名函数,对应python中的自定义函数def,是定义某个函数时比较高级的一种写法.作为python初学者,本文整理了lambda的一些基本用法和特点. lambda和def的 ...

  4. 思迈特软件Smartbi:Excel数据分析常用函数汇总!

    多传统行业的数据分析师只要求掌握Excel即可,会SPSS/SAS是加分项.即使在挖掘满街走,Python不如狗的互联网数据分析界,Excel也是不可替代的. Excel是我们工作中经常使用的一种工具 ...

  5. NiosII常用函数整理

    NiosII常用函数整理 IO操作函数函数原型:IORD(BASE, REGNUM) 输入参数:BASE为寄存器的基地址,REGNUM为寄存器的偏移量函数说明:从基地址为BASE的设备中读取寄存器中偏 ...

  6. Python中的map()函数和reduce()函数的用法

    Python中的map()函数和reduce()函数的用法 这篇文章主要介绍了Python中的map()函数和reduce()函数的用法,代码基于Python2.x版本,需要的朋友可以参考下   Py ...

  7. 举例详解Python中的split()函数的使用方法

    这篇文章主要介绍了举例详解Python中的split()函数的使用方法,split()函数的使用是Python学习当中的基础知识,通常用于将字符串切片并转换为列表,需要的朋友可以参考下   函数:sp ...

  8. python中的生成器函数是如何工作的?

    以下内容基于python3.4 1. python中的普通函数是怎么运行的? 当一个python函数在执行时,它会在相应的python栈帧上运行,栈帧表示程序运行时函数调用栈中的某一帧.想要获得某个函 ...

  9. pandas 常用函数整理

    pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame im ...

随机推荐

  1. selenium 无界面跑UI脚本

    from selenium.webdriver.chrome.options import Options from selenium import webdriver import time chr ...

  2. JVM(二)GC算法和垃圾收集器

    前言 垃圾收集器(Garbage Collection)通常被成为GC,诞生于1960年MIT的Lisp语言.上一篇介绍了Java运行时区域的各个部分,其中程序计数器.虚拟机栈.本地方法栈3个区域随线 ...

  3. HDU1003 最大子段和 线性dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)  ...

  4. canvas 绘制刮刮卡

    思路=> 用div来展示刮奖结果,用canvas绘制刮奖前展示的图片或者文字:将canvas叠在div上方,刮奖是只需要操作canvas配合touch事件即可简单完成. canvas刮奖可以用g ...

  5. Linux下onvi支持h265环境的的搭建:gsoap的安装及生产.c .h文件

     1. 下载gsoap  :http://www.genivia.com/products.html#notice,既Open Source gSOAP版本,并解压进入目录安装,configure后面 ...

  6. PHP与nginx之间的运行机制及其原理

    一.普及Nginx与Php-fpm相关知识点 Nginx是什么 Nginx ("engine x") 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服 ...

  7. Python的scrapy之爬取6毛小说网的圣墟

    闲来无事想看个小说,打算下载到电脑上看,找了半天,没找到可以下载的网站,于是就想自己爬取一下小说内容并保存到本地 圣墟 第一章 沙漠中的彼岸花 - 辰东 - 6毛小说网  http://www.6ma ...

  8. 利用IPC通道进行进程间通信(C#)

    有一个解决方案,其中包括一个Windows服务和一个Windows应用程序,两者之间需要进行通信.查了下,可以使用多种方法,如Web service(适用于不同系统及跨平台情况)..NET Remot ...

  9. 四分历python实现

    根据一个新加坡人的c代码改写成python代码 ''' 四分历''' # zq = 0 month = 0 def main(): global month year = 1 rb_year = 0 ...

  10. USACO Section1.3

    section1.2主要包括5道题和1个编程知识介绍.下面对这6部分内容进行学习. Complete Search 这个翻译成枚举搜索或者穷举搜索.主要用于当写代码时间不够用而且不用考虑程序的效率问题 ...