920. Number of Music Playlists
Your music player contains
N
different songs and she wants to listen toL
(not necessarily different) songs during your trip. You create a playlist so that:
- Every song is played at least once
- A song can only be played again only if
K
other songs have been playedReturn the number of possible playlists. As the answer can be very large, return it modulo
10^9 + 7
.
Example 1:
Input: N = 3, L = 3, K = 1
Output: 6
Explanation: There are 6 possible playlists. [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1].Example 2:
Input: N = 2, L = 3, K = 0
Output: 6
Explanation: There are 6 possible playlists. [1, 1, 2], [1, 2, 1], [2, 1, 1], [2, 2, 1], [2, 1, 2], [1, 2, 2]Example 3:
Input: N = 2, L = 3, K = 1
Output: 2
Explanation: There are 2 possible playlists. [1, 2, 1], [2, 1, 2]
Note:
0 <= K < N <= L <= 100
Approach #1: DP. [C++]
class Solution {
public int numMusicPlaylists(int N, int L, int K) {
int mod = (int)Math.pow(10, 9) + 7;
long[][] dp = new long[L+1][N+1];
dp[0][0] = 1;
for (int i = 1; i <= L; ++i) {
for (int j = 1; j <= N; ++j) {
dp[i][j] = (dp[i-1][j-1] * (N - (j - 1))) % mod;
if (j > K) {
dp[i][j] = (dp[i][j] + (dp[i-1][j] * (j - K)) % mod) % mod;
}
}
}
return (int)dp[L][N];
}
}
Analysis:
dp[i][j] denotes the solution of i songs with j difference songs. So the final answer should be dp[L][N]
Think one step before the last one, there are only cases for the answer of dp[i][j]
case 1 (the last added one is new song): listen i - 1 songs with j - 1 difference songs, then the last one is definitely new song with the choices of N - (j - 1).
case2 (the last added one is old song): listen i - 1 songs with j different songs, then the last one is definitely old song with the choices of j if without the constraint of K, the status equation will be dp[i][j] = dp[i-1][j-1] * (N - (j - 1)) + dp[i-1][j] * j
If with the constaint of K, there are also two cases
Case 1: no changes since the last added one is new song. Hence, there is no conflict
Case 2: now we don't have choices of j for the last added old song. Itt should be updateed j - k because k songs can't be chsed from j - 1 to j - k. However, if j <= K, this case will be 0 because only after choosing K different other songs, old song can be chosen.
if (j > k)
dp[i][j] = dp[i-1][j-1] * (N-(j-1)) + dp[i-1][j] * (j-k)
else
dp[i][j] = dp[i-1][j-1] * (N - (j-1))
Reference:
920. Number of Music Playlists的更多相关文章
- [LeetCode] 920. Number of Music Playlists 音乐播放列表的个数
Your music player contains N different songs and she wants to listen to L (not necessarily different ...
- [Swift]LeetCode920. 播放列表的数量 | Number of Music Playlists
Your music player contains N different songs and she wants to listen to L (not necessarily different ...
- leetcode hard
# Title Solution Acceptance Difficulty Frequency 4 Median of Two Sorted Arrays 27.2% Hard ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- COM Error Code(HRESULT)部分摘录
Return value/code Description 0x00030200 STG_S_CONVERTED The underlying file was converted to compou ...
- C#开发BIMFACE系列44 服务端API之计算图纸对比差异项来源自哪个图框
BIMFACE二次开发系列目录 [已更新最新开发文章,点击查看详细] 在前两篇博客<C#开发BIMFACE系列42 服务端API之图纸对比>.<C#开发BIMFACE系列43 ...
- QNX 多线程 (线程1每隔20ms读取 number;线程2每隔10ms计算一次)
#include <pthread.h>#include <stdio.h>#include <sys/time.h>#include <string.h&g ...
- JavaScript Math和Number对象
目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...
- Harmonic Number(调和级数+欧拉常数)
题意:求f(n)=1/1+1/2+1/3+1/4-1/n (1 ≤ n ≤ 108).,精确到10-8 (原题在文末) 知识点: 调和级数(即f(n))至今没有一个完全正确的公式, ...
随机推荐
- sql ltrim/rtrim 字段中为中文时出现?的问题
字段存储为中文,类型为nvarchar,使用ltrim时结果集中出现的问号,我的解决办法是:将问号replace掉
- MacOs安装mysql与修改root密码
1.下载安装包 http://www.mysql.com/downloads/ 找到如下内容下载 mysql-5.7.21-1-macos10.13-x86_64.dmg下载地址是 https://c ...
- Oracle登录命令
1.运行SQLPLUS工具 C:\Users\wd-pc>sqlplus 2.直接进入SQLPLUS命令提示符 C:\Users\wd-pc>sqlplus /nolog 3.以OS身份连 ...
- window.location.origin
当前页面的域名+端口号 var HTTP_REMOTE = (function () { var origin = window.location.origin; if (origin.match(/ ...
- url地址 参数 带 参数 注意事项 , chain , redirect , redirectAction
当 url 地址中含有 参数 时 ,若参数值是一个 含有 参数的 地址时 , 应警惕 ,如 index/goIndex!login?backUrl=/shop/goShop!go?a1=1& ...
- 打开jsp页面时,显示空白页。
打开jsp页面时,显示空白页. #foreach($e in $listPlanItem) #set($listPlanDetail=$!e.get(2)) < ...
- 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)
传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...
- 微分方程数值解Euler法
微分方程:dy/dt=1+y; 解是y=2exp(x)-1; clc clear figure() dx=0.1; x=:dx:; y=zeros(size(x)); x()=; y()=; :len ...
- IntelliJ IDEA 2017版 使用笔记(四) 模板 live template自定义设置;IDE快捷键使用
1.File ---> setting ---->Live Template 2.添加模板 3.添加模板组 4.模板组命名 5.填写配置 6.Template ...
- 疯狂安装oracle 12c,此版本没有scott这个用户
今天要学习oracle,然后寻思下个吧,结果出现了很多问题,在此分享一下,搞疯了,太痛苦了,学的教程是用的 Oracle 11g,我去官网下载的Oracle 12g,文件很大,好不容易装好了,寻思就这 ...