yolo算法框架使用二
6,voc数据集训练模型
1)下载数据集
官网提供一些voc数据,是基于2007年到2012年的,你可以通过以下地址下载到:
wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtrainval_11-May-.tar
tar xf VOCtrainval_06-Nov-.tar
tar xf VOCtest_06-Nov-.tar
可以把数据存放到VOCdevkit/目录下
2)生成识别标签
识别标签必须是.txt文件的,具体格式如下:
<object-class> <x> <y> <width> <height>
Object-class 是分类的名称
其余元素是关联到图片的像素,宽和高的
通过下载官网提供的voc_label.py 我们可以快速的生成这一个文件,把他下载到scripts/目录下:
wget https://pjreddie.com/media/files/voc_label.py
python voc_label.py
几分钟后,就会生成相应的文件存放到:
VOCdevkit/VOC2007/labels/ 或者 VOCdevkit/VOC2012/labels/下面:
ls
2007_test.txt VOCdevkit
2007_train.txt voc_label.py
2007_val.txt VOCtest_06-Nov-.tar
2012_train.txt VOCtrainval_06-Nov-.tar
2012_val.txt VOCtrainval_11-May-.tar
我们可以把自己真正要训练的文件合并成一个:
cat 2007_train.txt 2007_val.txt 2012_*.txt > train.txt
3)修改配置指向的数据(Pascal Data)
在cfg/voc.data里配置数据的指向:
classes=
train = <path-to-voc>/train.txt
valid = <path-to-voc>2007_test.txt
names = data/voc.names
backup = backup
<path-to-voc> 就是你数据集的指向
4)下载预训练的卷积的权重
这里用到卷积的权重是imageNet预训练提供:
wget https://pjreddie.com/media/files/darknet19_448.conv.23
你也可以通过下载预训练的Darknet19 448x448 model(https://pjreddie.com/darknet/imagenet/#darknet19_448) 模型来产生你自己的权重,执行下面的命名:
./darknet partial cfg/darknet19_448.cfg darknet19_448.weights darknet19_448.conv.
5)训练模型
./darknet detector train cfg/voc.data cfg/yolo-voc.cfg darknet19_448.conv.
7,用coco 训练yolo模型
Coco数据集,我没有用过,具体可以查看http://cocodataset.org/#overview 了解一下
1)获取coco数据集
下载coco的数据集和标签,可直接通过scripts/get_coco_dataset.sh脚本执行:
cp scripts/get_coco_dataset.sh data
cd data
bash get_coco_dataset.sh
这样标签和数据集都有了。
2)配置数据集的指向
在cfg/coco.data配置文件里配置:
classes=
train = <path-to-coco>/trainvalno5k.txt
valid = <path-to-coco>/5k.txt
names = data/coco.names
backup = backup
<path-to-coco>是你的具体路径指向
另外还需要配置你数据集是用于训练不是测试的,默认是测试的配置,在cfg/yolo.cfg:
[net]
# Testing
# batch=
# subdivisions=
# Training
batch=
subdivisions=
....
3)训练模型
./darknet detector train cfg/coco.data cfg/yolo.cfg darknet19_448.conv.
4)启用gpus执行训练,加速
./darknet detector train cfg/coco.data cfg/yolo.cfg darknet19_448.conv. -gpus ,,,
5)训练暂停或者从断点开始训练
./darknet detector train cfg/coco.data cfg/yolo.cfg backup/yolo.backup -gpus ,,,
8,官方特别声明的
如果你使用他们的框架,必须在注释里说明框架来源,可以直接在注释里粘入下面的注释:
@article{redmon2016yolo9000,
title={YOLO9000: Better, Faster, Stronger},
author={Redmon, Joseph and Farhadi, Ali},
journal={arXiv preprint arXiv:1612.08242},
year={}
}
参考地址:https://pjreddie.com/darknet/yolo/
论文地址 :https://arxiv.org/abs/1612.08242
yolo算法框架使用二的更多相关文章
- YOLO 算法框架的使用一(初级)
YOLO官方框架使用C写的,性能杠杠的,YOLO算法,我就不做过多介绍了.先简单介绍一下这个框架如何使用.这里默认是yolo2,yolo1接近过时.环境 推荐ubuntu 或者centos YOLO是 ...
- 第三十五节,目标检测之YOLO算法详解
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...
- Newtonsoft.Json C# Json序列化和反序列化工具的使用、类型方法大全 C# 算法题系列(二) 各位相加、整数反转、回文数、罗马数字转整数 C# 算法题系列(一) 两数之和、无重复字符的最长子串 DateTime Tips c#发送邮件,可发送多个附件 MVC图片上传详解
Newtonsoft.Json C# Json序列化和反序列化工具的使用.类型方法大全 Newtonsoft.Json Newtonsoft.Json 是.Net平台操作Json的工具,他的介绍就 ...
- [DeeplearningAI笔记]卷积神经网络3.1-3.5目标定位/特征点检测/目标检测/滑动窗口的卷积神经网络实现/YOLO算法
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1目标定位 对象定位localization和目标检测detection 判断图像中的对象是不是汽车--Image clas ...
- 知识图谱+Recorder︱中文知识图谱API与工具、科研机构与算法框架
目录 分为两个部分,笔者看到的知识图谱在商业领域的应用,外加看到的一些算法框架与研究机构. 文章目录 @ 一.知识图谱商业应用 01 唯品金融大数据 02 PlantData知识图谱数据智能平台 03 ...
- 7、滑动窗口套路算法框架——Go语言版
前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...
- MVC系列——MVC源码学习:打造自己的MVC框架(二:附源码)
前言:上篇介绍了下 MVC5 的核心原理,整篇文章比较偏理论,所以相对比较枯燥.今天就来根据上篇的理论一步一步进行实践,通过自己写的一个简易MVC框架逐步理解,相信通过这一篇的实践,你会对MVC有一个 ...
- JavaScript 框架设计(二)
JavaScript 高级框架设计 (二) 上一篇,JavaScript高级框架设计(一)我们 实现了对tag标签的选择 下来我们实现对id的选择,即id选择器. 我们将上一篇的get命名为getTa ...
- 【原创】NIO框架入门(二):服务端基于MINA2的UDP双向通信Demo演示
前言 NIO框架的流行,使得开发大并发.高性能的互联网服务端成为可能.这其中最流行的无非就是MINA和Netty了,MINA目前的主要版本是MINA2.而Netty的主要版本是Netty3和Netty ...
随机推荐
- [2018HN省队集训D5T1] 沼泽地marshland
[2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...
- python pandas dataframe 操作记录
从数据看select出数据后如何转换为dataframe df = DataFrame(cur.fetchall()) 如何更改列名,选取列,进行groupby操作 df.columns = ['me ...
- python第九课——while死循环
2.3.无限循环/死循环: 何时发生无限循环? 循环条件永远为True,就出现了无限循环 [注意] 无限循环是需要避免的,因为它极其占用系统资源: 但是配合我们之后讲的break等关键字,就会变得更有 ...
- 小白学svn
该博客是本人第一次在自己的电脑中部署svnserver后的一些心得,希望对小白们有所帮助.尽管本人之前有使用svn开发的经验,可是那都是使用百度开发人员平台的,我一直以为在自己的电脑中弄svnserv ...
- c++ const static
const作用: 1.定义常量,可以保护被修饰的东西,防止意外的修改,增强程序的健壮性. const int Max = 100; void f(const int i) { i=10;//error ...
- Python 日志输出
昨天的任务是需要记录各操作的性能数据,所以需要用这种格式来输出日志:{"adb_start_time": 1480040663, "tag_name": &qu ...
- pytest 框架自动化Selenium 之yield 使用
环境 python 3.7 由于3.0-3.5以下部分pytest可能有部分兼容问题安装建议2.7-2.9,3.5-最新 pip install pytest专属 pytest框架包 pip inst ...
- 《Mysql必知必会》笔记
两年前买的书,因为种种原因一直没看,零碎抽点时间看一遍,感觉对自己有用的就顺手记录下.之后转身就把这本书甩了,因为这本书的内容大多是增删改查语句,不实操只看的话,没有什么意义.而且作为一个测试,其实在 ...
- 开源 免费 java CMS - FreeCMS1.9 全文检索
项目地址:http://code.google.com/p/freecms/ 全文检索 从FreeCMS 1.7開始支持 仅仅有创建过索引的对象才干被lucene类标签查询到. 信息类数据会在信息更新 ...
- 【ThinkingInC++】75、多重继承
第九章 多重继承 9.2 接口继承 Intertfacees.cpp /** * 书本:[ThinkingInC++] * 功能:接口继承Interfaces.cpp * 时间:2014年10月28日 ...