简介

Stringr中包含3个主要的函数族

  • 字符操作
  • 空格处理
  • 模式匹配

常用函数

在平常的数据分析工作中,经常要用到如下的函数

函数 操作
str_length() 获取字符串长度
str_sub() 截取字符串
str_dup() 复制字符串
str_pad() 空格填充
str_trunc() 截取字符串
str_trim() 去除空格
str_split(str, "[:,]") 拆分
str_c()
str_c()
拼接
str_detect() 检测模式是否存在
str_subset() 返回匹配的结果
str_count() 统计匹配次数
str_locate()
str_locate_all()
匹配定位
str_extract()
str_extract_all()
提取匹配结果
str_match()
str_match_all()
分组匹配
str_replace()
str_replace_all()
替换匹配结果

字符操作

你可使用 str_length() 获取字符串长度

str_length("abc")
#> [1] 3

您可以使用str_sub() 访问单个字符。 它有三个参数:字符向量,起始位置和结束位置。

结束位置可以是从第一个字符开始计数的正整数,或从最后一个字符计数的负整数。 闭区间,如果位置长于字符串,将被截断。

library("stringr")

# 字符串向量
x <- c('abcdef', 'ghijkl')
str_sub(x, 3, 3)
#[1] "c" "i" str_sub(x, 2, -2)
#1] "bcde" "hijk" # 字符串
str_x <- 'abcdef'
str_sub(str_x, 3, 4)
#[1] "cd" # 修改字符串
str_sub(x, 3, 3) <- "X"
#[1] "abXdef" "ghXjkl" # 复制字符串
str_dup(x, c(2, 3))
#[1] "abXdefabXdef" "ghXjklghXjklghXjkl"
# 第一个字符串复制两遍,第二个字符串复制3遍

空格处理

str_pad() 通过在左侧,右侧或两侧添加多余的空格将字符串填充到固定长度。

# 左侧填充空格,长度10位
x <- c("abc", "defghi")
str_pad(x, 10)
#[1] " abc" " defghi" str_pad(x, 10, "both")
[1] " abc " " defghi " # 填充指定的字符 使用pad参数,注意,pad的参数只能是单个字符
str_pad(x, 10, pad = 'x')
#[1] "xxxxxxxabc" "xxxxdefghi"

str_pad() 永远不会剪裁字符串

str_pad(x, 4)
#> [1] " abc" "defghi"

如果你想确保所有的字符串长度一样,可以结合str_pad() and str_trunc()一起使用:

x <- c("Short", "This is a long string")
x %>%
str_trunc(10) %>%
str_pad(10, "right")
#[1] "Short " "This is..."

str_trim() 和 str_pad() 功能相反, 主要功能是去除头尾的空格

x <- c("  a   ", "b   ",  "   c")
str_trim(x)
#> [1] "a" "b" "c"
str_trim(x, "left")
#> [1] "a " "b " "c"

可以使用str_wrap() 来修改现有的空格,以便包装一段文本,使每行的长度尽可能相似。

jabberwocky <- str_c(
"`Twas brillig, and the slithy toves ",
"did gyre and gimble in the wabe: ",
"All mimsy were the borogoves, ",
"and the mome raths outgrabe. "
)
cat(str_wrap(jabberwocky, width = 40))
#> `Twas brillig, and the slithy toves did
#> gyre and gimble in the wabe: All mimsy
#> were the borogoves, and the mome raths
#> outgrabe.

模式匹配

我们在其他语言处理字符串时会经常使用正则表达式,我们来看看R中的正则用法

我们先来看个电话号码的例子

strings <- c(
"apple",
"219 733 8965",
"329-293-8753",
"Work: 579-499-7527; Home: 543.355.3679"
)
phone <- "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"
  1. str_detect() 检测模式是否存在,并返回一个逻辑向量,功能类似于 grepl()
# Which strings contain phone numbers?
str_detect(strings, phone)
#> [1] FALSE TRUE TRUE TRUE
  1. str_subset() 返回匹配正则表达式的字符向量的元素, 功能类似于 grep()
str_subset(strings, phone)
#> [1] "219 733 8965"
#> [2] "329-293-8753"
#> [3] "Work: 579-499-7527; Home: 543.355.3679"
  1. str_count() 统计匹配的次数
str_count(strings, phone)
#> [1] 0 1 1 2
  1. str_locate() 定位模式匹配的第一个位子,并返回一个带有开始和结束列的数字矩阵

    str_locate_all() 定位所有的匹配,并返回带有开始和结束列的矩阵列表
# Where in the string is the phone number located?
(loc <- str_locate(strings, phone))
#> start end
#> [1,] NA NA
#> [2,] 1 12
#> [3,] 1 12
#> [4,] 7 18
str_locate_all(strings, phone)
#> [[1]]
#> start end
#>
#> [[2]]
#> start end
#> [1,] 1 12
#>
#> [[3]]
#> start end
#> [1,] 1 12
#>
#> [[4]]
#> start end
#> [1,] 7 18
#> [2,] 27 38
  1. str_extract() 提取第一个匹配到的文本,并返回字符向量

    str_extract_all() 提取所有匹配到的文本,返回一堆字符向量
# What are the phone numbers?
str_extract(strings, phone)
#> [1] NA "219 733 8965" "329-293-8753" "579-499-7527"
str_extract_all(strings, phone)
#> [[1]]
#> character(0)
#>
#> [[2]]
#> [1] "219 733 8965"
#>
#> [[3]]
#> [1] "329-293-8753"
#>
#> [[4]]
#> [1] "579-499-7527" "543.355.3679"
str_extract_all(strings, phone, simplify = TRUE)
#> [,1] [,2]
#> [1,] "" ""
#> [2,] "219 733 8965" ""
#> [3,] "329-293-8753" ""
#> [4,] "579-499-7527" "543.355.3679"
  1. str_match() 分组匹配,从第一个匹配中提取匹配结果,返回一个字符矩阵,第一列返回完全匹配结果,其他列返回每组匹配结果

    str_match_all() 从所有匹配中提取匹配结果,返回一个字符矩阵列表
# Pull out the three components of the match
str_match(strings, phone)
#> [,1] [,2] [,3] [,4]
#> [1,] NA NA NA NA
#> [2,] "219 733 8965" "219" "733" "8965"
#> [3,] "329-293-8753" "329" "293" "8753"
#> [4,] "579-499-7527" "579" "499" "7527"
str_match_all(strings, phone)
#> [[1]]
#> [,1] [,2] [,3] [,4]
#>
#> [[2]]
#> [,1] [,2] [,3] [,4]
#> [1,] "219 733 8965" "219" "733" "8965"
#>
#> [[3]]
#> [,1] [,2] [,3] [,4]
#> [1,] "329-293-8753" "329" "293" "8753"
#>
#> [[4]]
#> [,1] [,2] [,3] [,4]
#> [1,] "579-499-7527" "579" "499" "7527"
#> [2,] "543.355.3679" "543" "355" "3679"
  1. str_replace() 替换第一个匹配的结果

    str_replace_all() 替换所有匹配到的结果
str_replace(strings, phone, "XXX-XXX-XXXX")
#> [1] "apple"
#> [2] "XXX-XXX-XXXX"
#> [3] "XXX-XXX-XXXX"
#> [4] "Work: XXX-XXX-XXXX; Home: 543.355.3679"
str_replace_all(strings, phone, "XXX-XXX-XXXX")
#> [1] "apple"
#> [2] "XXX-XXX-XXXX"
#> [3] "XXX-XXX-XXXX"
#> [4] "Work: XXX-XXX-XXXX; Home: XXX-XXX-XXXX"
  1. str_split() 分隔字符串
str_split("a-b-c", "-")
#> [[1]]
#> [1] "a" "b" "c"
  1. str_c(str_vec, collapse=",") 拼接向量
x <- c('a', 'b', 'c')
str_c(x, collapse = ',')
#[1] "a,b,c"

参考资料

R中字符串操作的更多相关文章

  1. Python中字符串操作

    #Python字符串操作 '''1.复制字符串''' #strcpy(sStr1,sStr2) sStr1 = 'strcpy' sStr2 = sStr1 sStr1 = 'strcpy2' pri ...

  2. Python中字符串操作函数string.split('str1')和string.join(ls)

    Python中的字符串操作函数split 和 join能够实现字符串和列表之间的简单转换, 使用 .split()可以将字符串中特定部分以多个字符的形式,存储成列表 def split(self, * ...

  3. shell中字符串操作【转】

    转自:http://blog.chinaunix.net/uid-29091195-id-3974751.html 我们所遇到的编程语言中(汇编除外)都少不了字符串处理函数吧,当然shell编程也不例 ...

  4. python中字符串操作--截取,查找,替换

    python中,对字符串的操作是最常见的,python对字符串操作有自己特殊的处理方式. 字符串的截取 python中对于字符串的索引是比较特别的,来感受一下: s = '123456789' #截取 ...

  5. R中双表操作学习[转载]

    转自:https://www.jianshu.com/p/a7af4f6e50c3 1.原始数据 以上是原有的一个,再生成一个新的: > gene_exp_tidy2 <- data.fr ...

  6. VB中字符串操作函数

    Len Len(string|varname) 返回字符串内字符的数目,或是存储一变量所需的字节数. Trim Trim(string) 将字符串前后的空格去掉 Ltrim Ltrim(string) ...

  7. JAVA中字符串操作几种方式对比

    @参考文章 方法及原理: 方法1:a=a+b实际上另开辟一个空间c=a+b;然后将c的引用赋给a 方法2:a += b实际上是建立一个StringBuffer,然后调用append(),最后再将Str ...

  8. IOS中字符串操作

    1.比较大小 - (NSComparisonResult)compare:(NSString *)string; 返回值NSComparisonResult有3种情况: NSOrderedAscend ...

  9. Java中字符串操作的基本方法总结:

    1.字母大小写转换: package com.imooc; public class SortDemo { public static void main(String[] args) { char ...

随机推荐

  1. (转)AIX rootvg 镜像创建与磁盘更换

    # prtconf | grep disk # chdev -l hdisk1 -a pv=yes # extendvg rootvg hdisk1 # chvg -Qn rootvg # lsvg ...

  2. Java之IO(十三)File、Filter、Piped、String和InputStreamReader与OutputStreamWriter

    转载请注明原出处:http://www.cnblogs.com/lighten/p/7264196.html 1.前言 断更一段时间,计划果然赶不上变化(还是太懒...).这次一次性将剩余的5组字符流 ...

  3. Apache JMeter2.13 实战

    安装目录下 设置浏览器代理127.0.0.1 8080,以chrome为例 开始录制脚本,进入应用点击相应的功能,可以捕获到如下地址 去除无用地址,保留需要测试的地址 注:上图编号列表中11为获取co ...

  4. Fiddler Web Debugger的截断功能(图文详解)

    不多说,直接上干货! Fiddler的重头好戏是截断数据包,首先需要设置截取数据包的类型,依次打开菜单“Rules->automatic breakpoints”,可以选择“before req ...

  5. Attr.checkId()方法

    1.符号sym是TYP02 举个例子,如下: package bazola; class Point { // ... } class Tree<A> { class AttrVisito ...

  6. beego 遇到的一些问题

    1.安装 beego 出现的问题 今天在通过 go get -u github.com/astaxie/beego 安装 beego 应用时,出现下面问题: # cd .; git clone htt ...

  7. 业务ID 生成策略

    业务ID 生成策略,从技术上说,基本要借助一个集中式的引擎来帮忙实现. 为了扩大业务ID生成策略的并发问题,还有更为技巧性的提升. 先来介绍普遍的分布式ID生成策略: 1. 利用DB的自增主键 这里又 ...

  8. Java中float和double转换的问题

    为什么double转float不会出现数据误差,而float转double却误差如此之大?   double d = 3.14; float f = (float)d; System.out.prin ...

  9. 基于线程实现的生产者消费者模型(Object.wait(),Object.notify()方法)

    需求背景 利用线程来模拟生产者和消费者模型 系统建模 这个系统涉及到三个角色,生产者,消费者,任务队列,三个角色之间的关系非常简单,生产者和消费者拥有一个任务队列的引用,生产者负责往队列中放置对象(i ...

  10. after_create and after_commit

    A relational database, like mysql, provides transactions to wrap several operations in one unit, mak ...