微分方程:dy/dt=1+y; 解是y=2exp(x)-1;

clc
clear
figure()
dx=0.1;
x=:dx:;
y=zeros(size(x)); x()=;
y()=;
for i=:length(x)-
% z= y(i)+ (+y(i)) * dx;
% y(i+)= y(i)+ ( (+y(i) + + z) /) * dx;
y(i+)= y(i)+ (+y(i)) * dx;
end plot(x,y)
grid on
hold on
ezplot('2*exp(x)-1',[,])

logistic增长模型

%微分方程入下
%dp/dt=0.001*(-p)*p;
clc
clear
figure()
dx=0.1;
x=:dx:;
y=zeros(size(x)); x()=;
y()=;
for i=:length(x)-
% z= y(i)+ (+y(i)) * dx;
% y(i+)= y(i)+ ( (+y(i) + + z) /) * dx;
% y(i+)= y(i)+ (+y(i)) * dx;
z=y(i) +0.001 *(-y(i))*y(i)*dx;
y(i+)=y(i) + ((0.001 *(-y(i))*y(i) + 0.001*(-z)*z )/ ) *dx;
end plot(x,y)
grid on
hold on

微分方程数值解Euler法的更多相关文章

  1. 本学期微分方程数值解课程总结(matlab代码)

    最简单求解一个微分方程数值解得方法:Euler法 function [x,y]=Euler_method(dufun,span,h,x0,y0) %EuLer格式, %求解方程y'=dufun(x,y ...

  2. 关于本科毕业论文《Laguerre小波在数值积分与微分方程数值解中的应用》存在的问题与小结

    本科的毕业设计<Laguerre小波在数值积分与微分方程数值解中的应用>是通过Laguerre小波函数来近似表达某个需要求积分或解微分方程的函数,将原函数很难求得函数用小波函数表达出来,这 ...

  3. Euler-Maruyama discretization("欧拉-丸山"数值解法)

    欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分 ...

  4. InfoQ一波文章:AdaSearch/JAX/TF_Serving/leon.bottou.org/Neural_ODE/NeurIPS_2018最佳论文

    和 Nested Partition 有相通之处? 伯克利提出 AdaSearch:一种用于自适应搜索的逐步消除方法 在机器学习领域的诸多任务当中,我们通常希望能够立足预先给定的固定数据集找出问题的答 ...

  5. 图灵数学·统计学丛书.PDF(53本全)

    图灵数学·统计学丛书01-概率论及其应用(第1卷·第3版)-[美]William.Feller-人民邮电出版社.pdf 图灵数学·统计学丛书01-金融数学:衍生产品定价引论-[英]M·巴克斯特& ...

  6. 经典Mathematica函数大全

    转自:http://blog.renren.com/share/238323208/8426343822  Mathmatic 函数表  一.运算符及特殊符号 Line1; 执行Line,不显示结果  ...

  7. 用python面向对象的方法实现欧拉算法和龙格库塔算法

    #!/bin/python3 # -*-coding:utf-8 -*- import math import numpy as np #定义一个欧拉算法的类,从而实现不同步长的引用 class Eu ...

  8. HDU2824-The Euler function-筛选法求欧拉函数+求和

    欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...

  9. 数学——Euler方法求解微分方程详解(python3)

    算法的数学描述图解 实例 用Euler算法求解初值问题 \[ \frac{dy}{dx}=y+\frac{2x}{y^2}\] 初始条件\(y(0)=1\),自变量的取值范围\(x \in [0, 2 ...

随机推荐

  1. as3 加载库声音报错

    排除法:(依次排序,从简单到难) 1.引用的声音类名与声音链接名字是否一致,可trace声音对象字符串检验 2.引用的声音对象是否不存在 ,可trace声音对象检验 3.最后检验是否当前swf中,其中 ...

  2. python 升级到python2.7

    查看python的版本 [root@localhost ~] python  -V   Python 2.4.3 1.先安装GCC yum -y install gcc 如果安装gcc 出错, yum ...

  3. Mongodb 折腾笔记

    简介: Mongodb 是一个由 C++ 语言编写的基于分布式文件存储的数据库,是目前最像关系型数据库的非关系型数据库. 下载地址:https://fastdl.mongodb.org/linux/m ...

  4. jemalloc for mysql

    ptmalloc 是glibc的内存分配管理 tcmalloc 是google的内存分配管理模块 jemalloc 是BSD的提供的内存分配管理 三者jemalloc和tcmalloc的性能不分伯仲, ...

  5. 本地管理表空间(LMT)与自动段空间管理(ASSM)概念

    创建表空间时,extent management local 定义本地管理表空间(LMT),segment space management auto 定义自动段空间管理(ASSM). extent ...

  6. Centos7 配置ssh 免秘钥登陆

    1.yum install -y openssh 2.servier1: ssh-keygen -t rsa #有提示的直接enter 3.server 2: ssh-keygen -t rsa # ...

  7. express中使用ejs

    [express中使用ejs] 1.添加 ejs 依赖. npm install ejs --save 2.设置 view engine 为 ejs 即可.

  8. 通过jquery,从json中读取数据追加到html中

    1.下载安装jquery   可通过下面的方法引入在线版本的js: <script src="https://apps.bdimg.com/libs/jquery/2.1.4/jque ...

  9. ValueError: update only works with $ operators

    问题:在执行pymongo的update语句时,提示了ValueError: update only works with $ operators 脚本:db.user.update_one({&qu ...

  10. Web标准:一、xhtml css基础知识

    说明:这些知识是我看<十天学会DIV+CSS教程完整版 完美整理+完整代码>这篇文章后记下来的一些内容,包括少部分不懂得地方去百度到的一些解释等,该文章的地址: http://wenku. ...