CF687B Remainders Game
题意:已知n个数,第i个为ci,给定一个数x mod ci的结果,再给点一个k,问能不能知道x mod k的值?
分析:刚看题目的我一脸蒙蔽,对题意有点不理解,能的情况似乎有很多,我该从哪里下手呢?
先从不能的情况来看,可以知道,如果不能知道x mod k的值,当且仅当有两个解x1,x2, x1 ≡ x2(mod ci)x1 ≢ x2 (mod k) 左边这个是不同余的意思,
为什么是这样的呢?因为题目中说x mod k的值是唯一的,我们却会出现两个满足题意的x值 mod k的值不同,这就矛盾了。
那么我们怎样求解这两个同余式呢?如果x1 ≡ x2(mod ci),那么(x1 - x2) % ci = 0,所以x1 - x2一定是ci的最小公倍数的倍数,
然后对第二个式子变形一下:(x1 - x2) % k != 0,也就是说k不整除lcm{ci}那么这道题就变成了要我们求解lcm{ci}到底是不是k的倍数。
但是直接求会lcm会爆掉啊,如果取模的话涉及到除法要求逆元复杂度又会爆炸,该怎么处理?
正确的方法是分解质因数:将k表示为p1^k1 * p2 ^ k2 * ... *pn ^ kn的形式,如果lcm{ci}是k的倍数,那么p1^k1、p2^k2...pn^kn一定会全部
出现在某些ci中,我们只需要在读入的时候检验一下打个标记就好了。一位大神说的对:lcm就是质因子的并集,gcd就是质因子的交集,
遇到gcd、lcm,分解一下质因子不失为一种好的方法。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath> using namespace std; int n, k, c,tot,prime[];
bool vis[]; int main()
{
scanf("%d%d", &n, &k);
for (int i = ; i <= sqrt(k); i++)
{
if (k % i == )
{
int t = ;
while (k % i == )
{
t *= i;
k /= i;
}
prime[++tot] = t;
}
}
if (k)
prime[++tot] = k;
for (int i = ; i <= n; i++)
{
int c;
scanf("%d", &c);
for (int j = ; j <= tot; j++)
if (c % prime[j] == )
vis[j] = ;
}
for (int i = ; i <= tot; i++)
if (!vis[i])
{
printf("No\n");
return ;
}
printf("Yes\n"); return ;
}
CF687B Remainders Game的更多相关文章
- oi初级数学知识
一.先是一些整除的性质: •整除:若a=bk,其中a,b,k都是整数,则b整除a,记做b|a. •也称b是a的约数(因数),a是b的倍数 •显而易见的性质: •1整除任何数,任何数都整除0 •若a|b ...
- Codeforces 687B. Remainders Game[剩余]
B. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- codeforces 360 D - Remainders Game
D - Remainders Game Description Today Pari and Arya are playing a game called Remainders. Pari choos ...
- codeforces 616E Sum of Remainders (数论,找规律)
E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学
E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...
- Codeforces Round #360 (Div. 2) D. Remainders Game 中国剩余定理
题目链接: 题目 D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes 问题描述 To ...
- Codeforces 616E - Sum of Remainders
616E Sum of Remainders Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + - + n mod m. As ...
- Codeforces 999D Equalize the Remainders (set使用)
题目连接:Equalize the Remainders 题意:n个数字,对m取余有m种情况,使得每种情况的个数都为n/m个(保证n%m=0),最少需要操作多少次? 每次操作可以把某个数字+1.输出最 ...
- Codeforces Round #360 (Div. 2) D. Remainders Game 数学
D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...
随机推荐
- Java实现链式存储的二叉查找树(递归方法)
二叉查找树的定义: 二叉查找树或者是一颗空树,或者是一颗具有以下特性的非空二叉树: 1. 若左子树非空,则左子树上所有节点关键字值均小于根节点的关键字: 2. 若右子树非空,则右子树上所有节点关键字值 ...
- Richard Stallman:让我们关注和尊敬自由软件教父
1953年,Richard Stallman生于美国纽约曼哈顿区.在度过了并不快乐的童年之后,他在哈佛大学找到了自己的家.在MIT人工智能实验室工作期间,展露出了自己的计算 机天赋.对他来说,开发操作 ...
- POJ 3164 Command Network ( 最小树形图 朱刘算法)
题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...
- vue、入门
入门vue v-on:click:chang 绑定事件点击 生面周期,整个vue的执行过程,他的应用执行了生面周期,也就是执行过程,这个执行过程如下图表,我们可以参考下图,也可以访问官方网址:ht ...
- Python练习-一个怪癖老师的不可描述
# 编辑者:闫龙 # 定义老师类,把老师的属性:薪资,隐藏起来,然后针对该属性开放访问接口 # egon老师有多种癖好,把这种癖好隐藏起来,然后对外提供访问接口 # 而且以后还会egon老师培养很多其 ...
- C - A Plug for UNIX (又是建图坑)
题目链接:https://cn.vjudge.net/contest/68128#problem/C 没理解好题意真的麻烦,一上午就这么过去了..... 具体思路:按照 源点 ->插座-> ...
- 查看GCC的内置宏定义
开发过程中我们常常需要使用宏定义.. 为了尽可能多的使用GCC为我们提供的特性,首先我们需要知道gcc提供了那些特性... gcc -dM -E - < /dev/null 没错,就这么一句话就 ...
- 【bzoj题解】2186 莎拉公主的困惑
题目传送门. 题意:求\([1,n!]\)中与\(m!\)互质的数的个数,对质数\(R\)取模,\(n\geq m\). 答案应该等于\(\frac{n!}{m!}\phi(m!)=\frac{n!} ...
- 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂
题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...
- NVME SSD vs SATA SSD(转)
NVMe是个啥?未来SSD主流标准早知 关注固态硬盘的朋友应该对于这个词汇并不陌生,特别是今年NVMe也频繁出现在各大媒体文章中,随着高端SSD市场逐渐从SATA专项PCI-E时,以前的AHCI标准已 ...