KMP 算法,俗称“看毛片”算法,是字符串匹配中的很强大的一个算法,不过,对于初学者来说,要弄懂它确实不易。整个寒假,因为家里没有网,为了理解这个算法,那可是花了九牛二虎之力!不过,现在我基本上对这个算法理解算是比较透彻了!特写此文与大家分享分享!

  我个人总结了, KMP 算法之所以难懂,很大一部分原因是很多实现的方法在一些细节的差异。怎么说呢,举我寒假学习的例子吧,我是看了一种方法后,似懂非懂,然后去看另外的方法,就全都乱了!体现在几个方面: next 数组,有的叫做“失配函数”,其实是一个东西; next 数组中,有的是以下标为 0 开始的,有的是以 1 开始的; KMP 主算法中,当发生失配时,取的 next 数组的值也不一样!就这样,各说各的,乱的很!

  所以,在阐述我的理解之前,我有必要说明一下,我是用 next 数组的, next 数组是以下标 0开始的!还有,我不会在一些基础的概念上浪费太多,所以你在看这篇文章时必须要懂得一些基本的概念,例如 “ 朴素字符串匹配 ”“ 前缀 ” , “ 后缀 ” 等!

假设在我们的匹配过程中出现了这一种情况:

根据 KMP 算法,在该失配位会调用该位的 next 数组的值!在这里有必要来说一下 next 数组的作用!说的太繁琐怕你听不懂,让我用一句话来说明:

返回失配位之前的最长公共前后缀!

好,不管你懂不懂这句话,我下面的文字和图应该会让你懂这句话的意思以及作用的!

首先,我们取之前已经匹配的部分(即蓝色的那部分!)

我们在上面说到 next 数组的作用时,说到 “ 最长公共前后缀 ” ,体现到图中就是这个样子!

接下来,就是最重要的了!

没错,这个就是 next 数组的作用了 :

返回当前的最长公共前后缀长度,假设为 len 。因为数组是由 0 开始的,所以 next 数组让第 len 位与主串匹配就是拿最长前缀之后的第 1 位与失配位重新匹配,避免匹配串从头开始!如下图所示!

(重新匹配刚才的失配位!)

如果都说成这样你都不明白,那么你真的得重新理解什么是 KMP 算法了!

接下来最重要的,也是 KMP 算法的核心所在,就是 next 数组的求解!不过,在这里我找到了一个全新的理解方法!如果你懂的上面我写的的,那么下面的内容你只需稍微思考一下就行了!

跟刚才一样,我用一句话来阐述一下 next 数组的求解方法,其实也就是两个字:

继承

a 、当前面字符的前一个字符的对称程度为 0 的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是 0 ,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如 agcta 这个里面 t 的是 0 ,那么后面的 a 的对称程度只需要看它是不是等于第一个字符 a 了。

b 、按照这个推理,我们就可以总结一个规律,不仅前面是 0 呀,如果前面一个字符的 next 值是 1 ,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是 1 ,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是 2 了。有两个字符对称了。比如上面 agctag ,倒数第二个 a 的 next 是 1 ,说明它和第一个 a 对称了,接着我们就把最后一个 g 与第二个 g 比较,又相等,自然对称成都就累加了,就是 2 了。

c 、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

如果蓝色的部分相同,则当前 next 数组的值为上一个 next 的值加一,如果不相同,就是我们下面要说的!

如果不相同,用一句话来说,就是:

从前面来找子前后缀

1 、如果要存在对称性,那么对称程度肯定比前面这个的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么就继承前面的对称性了。

2 、要找更小的对称,必然在对称内部还存在子对称,而且这个必须紧接着在子对称之后。

如果看不懂,那么看一下图吧!

好了,我已经把该说的尽可能以最浅显的话和最直接的图展示出来了,如果还是不懂,那我真的没有办法了!

说了这么多,下面是代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 100 void cal_next( char * str, int * next, int len )
{
int i, j; next[] = -;
for( i = ; i < len; i++ )
{
j = next[ i - ];
while( str[ j + ] != str[ i ] && ( j >= ) )
{
j = next[ j ];
}
if( str[ i ] == str[ j + ] )
{
next[ i ] = j + ;
}
else
{
next[ i ] = -;
}
}
} int KMP( char * str, int slen, char * ptr, int plen, int * next )
{
int s_i = , p_i = ; while( s_i < slen && p_i < plen )
{
if( str[ s_i ] == ptr[ p_i ] )
{
s_i++;
p_i++;
}
else
{
if( p_i == )
{
s_i++;
}
else
{
p_i = next[ p_i - ] + ;
}
}
}
return ( p_i == plen ) ? ( s_i - plen ) : -;
} int main()
{
char str[ N ] = {};
char ptr[ N ] = {};
int slen, plen;
int next[ N ]; while( scanf( "%s%s", str, ptr ) )
{
slen = strlen( str );
plen = strlen( ptr );
cal_next( ptr, next, plen );
printf( "%d\n", KMP( str, slen, ptr, plen, next ) );
}
return ;
}

[转]KMP 算法的更多相关文章

  1. 简单有效的kmp算法

    以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说 ...

  2. KMP算法

    KMP算法是字符串模式匹配当中最经典的算法,原来大二学数据结构的有讲,但是当时只是记住了原理,但不知道代码实现,今天终于是完成了KMP的代码实现.原理KMP的原理其实很简单,给定一个字符串和一个模式串 ...

  3. 萌新笔记——用KMP算法与Trie字典树实现屏蔽敏感词(UTF-8编码)

    前几天写好了字典,又刚好重温了KMP算法,恰逢遇到朋友吐槽最近被和谐的词越来越多了,于是突发奇想,想要自己实现一下敏感词屏蔽. 基本敏感词的屏蔽说起来很简单,只要把字符串中的敏感词替换成"* ...

  4. KMP算法实现

    链接:http://blog.csdn.net/joylnwang/article/details/6778316 KMP算法是一种很经典的字符串匹配算法,链接中的讲解已经是很明确得了,自己按照其讲解 ...

  5. 数据结构与算法JavaScript (五) 串(经典KMP算法)

    KMP算法和BM算法 KMP是前缀匹配和BM后缀匹配的经典算法,看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同 前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从 左到右 后缀匹配 ...

  6. 扩展KMP算法

    一 问题定义 给定母串S和子串T,定义n为母串S的长度,m为子串T的长度,suffix[i]为第i个字符开始的母串S的后缀子串,extend[i]为suffix[i]与字串T的最长公共前缀长度.求出所 ...

  7. 字符串模式匹配之KMP算法图解与 next 数组原理和实现方案

    之前说到,朴素的匹配,每趟比较,都要回溯主串的指针,费事.则 KMP 就是对朴素匹配的一种改进.正好复习一下. KMP 算法其改进思想在于: 每当一趟匹配过程中出现字符比较不相等时,不需要回溯主串的 ...

  8. 算法:KMP算法

    算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...

  9. BF算法与KMP算法

    BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...

  10. KMP算法-next函数求解

    KMP函数求解:一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为KMP算法.KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串 ...

随机推荐

  1. MT【145】不变的平面角

    (2018,4月学考数学选择最后一题)如图,设矩形$ABCD$所在平面与梯形$ACEF$所在平面相交于$AC$. 若$AB=1,BC=\sqrt{3},AF=EF=EC=1,$则下面二面角的平面角为定 ...

  2. 【poj3294】 Life Forms

    http://poj.org/problem?id=3294 (题目链接) 题意 给定 n 个字符串,求出现在不小于 k 个字符串中的最长子串. Solution 后缀数组论文题.. 将 n 个字符串 ...

  3. phpredis pipeline

    通过pipeline方式将client端命令一起发出,redis server会处理完多条命令后,将结果一起打包返回client,从而节省大量的网络延迟开销.

  4. BZOJ 1497 [NOI2006]最大获利

    1497: [NOI2006]最大获利 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前 ...

  5. laravel DB listen 回调追踪产生 sql 语句的代码

    \DB::listen(function (QueryExecuted $sql) { \Log::info($sql->sql); \Log::info((new \Exception())- ...

  6. Java入门:基础算法之计算三角形面积

    本部分介绍如何计算三角形面积. /** * @author: 理工云课堂 * @description: 程序计算三角形的面积.三角形的底和高由用户输入 */ import java.util.Sca ...

  7. Django admin 忘记密码

    from django.contrib.auth.models import User user = User.objects.get(username="admin") user ...

  8. Selenium geckodriver异常

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  9. P2015 二叉苹果树

    P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...

  10. Java获取精确到秒的时间戳

    1.时间戳简介: 时间戳的定义:通常是一个字符序列,唯一地标识某一刻的时间.数字时间戳技术是数字签名技术一种变种的应用.是指格林威治时间1970年01月01日00时00分00秒(北京时间1970年01 ...