P1155 双栈排序
题目描述
Tom最近在研究一个有趣的排序问题。如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序。

操作aaa
如果输入序列不为空,将第一个元素压入栈S1
操作b
如果栈S1不为空,将S1栈顶元素弹出至输出序列
操作c
如果输入序列不为空,将第一个元素压入栈S2
操作d
如果栈S2不为空,将S2栈顶元素弹出至输出序列
如果一个1−n的排列P可以通过一系列操作使得输出序列为1,2,…,(n−1),n,Tom就称P是一个“可双栈排序排列”。例如(1,3,2,4)就是一个“可双栈排序序列”,而(2,3,4,1)不是。下图描述了一个将(1,3,2,4)排序的操作序列:<a,c,c,b,a,d,d,b>

当然,这样的操作序列有可能有几个,对于上例(1,3,2,4),<a,c,c,b,a,d,d,b>是另外一个可行的操作序列。Tom希望知道其中字典序最小的操作序列是什么。
输入输出格式
输入格式:
第一行是一个整数n。
第二行有n个用空格隔开的正整数,构成一个1−n的排列。
输出格式:
共一行,如果输入的排列不是“可双栈排序排列”,输出数字0;否则输出字典序最小的操作序列,每两个操作之间用空格隔开,行尾没有空格。
输入输出样例
4
1 3 2 4
a b a a b b a b
4
2 3 4 1
0
3
2 3 1
a c a b b d
说明
30%的数据满足: n≤10
50%的数据满足:n≤50
100%的数据满足: n≤1000
Solution:
本题二分图染色+栈模拟。
若我们知道每个数应该放在哪个栈中,就可以去模拟了。
考虑数$a_i,a_j,a_k$不能在同一栈的情况,若$i<j<k,a_i<a_j,a_i>a_k$那么$i,k$是肯定不能在同一栈内的,我们对二元组建边,那么就是个二分图染色的模型了。
由于要字典序最小,所以每次染色时另当前未被染色的位置为栈1再去dfs,染色后每个位置所在的栈就确定了。
然后就是纯模拟咯。
(安利一个神奇的调试技巧:用iostream库下的cerr代替cout,在评测机测试时会直接跳过这条输出语句,但在终端可以输出,这样就能防止忘记删调试语句而写挂!>.^_^.<)
代码:
/*Code by 520 -- 9.5*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,a[N],minn[N],col[N];
int to[N],net[N],h[N],cnt;
int stk1[N],stk2[N],top1,top2; il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} bool dfs(int u){
for(RE int i=h[u];i;i=net[i])
if(!col[to[i]]) {
col[to[i]]=col[u]^;
if(!dfs(to[i]))return ;
}
else if(col[to[i]]==col[u]) return ;
return ;
} int main(){
ios::sync_with_stdio();
cin>>n,minn[n+]=0x7fffffff;
For(i,,n) cin>>a[i];
Bor(i,,n) minn[i]=min(minn[i+],a[i]);
For(i,,n) For(j,i+,n) if(a[i]>minn[j+]&&a[i]<a[j]) add(i,j),add(j,i);
For(i,,n) if(!col[i]) {
col[i]=;
if(!dfs(i))cout<<,exit();
}
For(i,,n) cerr<<col[i]<<' ';cerr<<endl;
int cnt=;
For(i,,n){
if(col[i]==) stk1[++top1]=a[i],cout<<"a ";
else stk2[++top2]=a[i],cout<<"c ";
while(top1&&stk1[top1]==cnt||top2&&stk2[top2]==cnt){
if(stk1[top1]==cnt) cout<<"b ",--top1;
else cout<<"d ",--top2;
++cnt;
}
}
return ;
}
P1155 双栈排序的更多相关文章
- P1155 双栈排序(二分图染色)
P1155 双栈排序(二分图染色) 题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一 ...
- 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)
洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...
- [NOIP2008] 提高组 洛谷P1155 双栈排序
题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...
- 洛谷——P1155 双栈排序
题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...
- 洛谷P1155 双栈排序
这题什么毒瘤......之前看一直没思路,然后心说写个暴搜看能有多少分,然后就A了??! 题意:给你一个n排列,求它们能不能通过双栈来完成排序.如果能输出最小字典序方案. [update]这里面加了一 ...
- LOJ P1155 双栈排序 二分图染色 图论
https://www.luogu.org/problem/show?pid=P1155 题解: https://www.byvoid.com/zhs/blog/noip2008-twostack 开 ...
- 洛谷P1155 双栈排序(贪心)
题意 题目链接 Sol 首先不难想到一种贪心策略:能弹则弹,优先放A 然后xjb写了写发现只有\(40\),原因是存在需要决策的情况 比如 \(A = {10}\) \(B = {8}\) 现在进来一 ...
- Luogu P1155 双栈排序 图论?模拟吧。。
今天想做做图论,于是点开了这道题....(是二分图染色然而我没看出来) 四种操作及条件: 1. s1.push() 需满足 待push的元素小于栈顶 && { 若在原序列中,待push ...
- 【Luogu】P1155双栈排序(二分图)
题目链接在此 此题一开始写了个深搜,过了30%的数据,也就是n<=10的那一段.... 然后看了题解发现这是个二分图的判断. 我们先举例子找到不能放进一个栈里的规律.设有数列[2,3,1,4] ...
随机推荐
- HTML5新增核心工具——本地存储
除了Canvas元素外,HMTL5另外一个新增的非常重要的功能是可以在客户端本地存储数据库的Web Storage.本文就介绍下Web Storage以及SQLLite操作. Web Storage分 ...
- STM平台增加性能测试/稳定性测试部分【一】
前置 我之前写了一个接口自动化平台的,后期因为一个原因删除了. 现在,在此平台的基础上,我又增加了性能/稳定性的功能 它的前端大概是这样: 数据解析: 图表展示: 我将稳定性及性能归与一套方案去编写, ...
- 'javac' 不是内部或外部命令,也不是可运行的程序 或批处理文件.
如果你只需要使用javac命令不需要如此复杂的!! 你先把你自己新建的JAVA_HOME.CLASSPATH这两个变量和PATH变量中的JAVA_HOME%\bin;%JAVA_HOME%\jre\b ...
- python魔法方法大全
1.python魔法方法详解: python魔法方法是可以修改重载的,如果你的对象实现(重载)了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,你可以定义自己想要的行为,而 ...
- 解决Ubuntu“下载额外数据文件失败 ttf-mscorefonts-installer”的问题 (转载)
解决Ubuntu“下载额外数据文件失败 ttf-mscorefonts-installer”的问题 发表于 2017-09-15 | 更新于 2018-04-29 | 分类于 Linux | 评论数: ...
- Hyperledger Fabric -- gossip 协议
Hyperledger gossip 本文记述了Hyperledger Fabric 中 一种网络数据同步协议--gossip,它的主要作用是致力于账本数据的安全传输,保证不同节点之间状态的同步和 ...
- 工程能力之C4模型
概述 刚在InfoQ上看到一篇介绍C4Model的文章,觉得这个模型设计的很赞,很有指导意义,做个简单的记录. Why,为什么需要架构图? ThoughtWorks中国 文章中有几句话我觉得很有道理, ...
- IPC_Binder_java_1
title: IPC_Binder_java_1 date: 2017-01-03 21:30:55 tags: [IPC,Binder] categories: [Mobile,Android] - ...
- 笨办法学Python - 习题11-12: Asking Questions & Prompting People
目录 1.习题 11: 提问 2.习题 12: 提示别人 3.总结 1.习题 11: 提问 学习目标:了解人机交互场景,熟悉raw_input 的用法. 1.在 Python2.x 中 raw_inp ...
- bg,fg,job命令详解
基础命令学习目录首页 原文链接:http://www.cnblogs.com/chjbbs/p/6307333.html linux提供的fg和bg命令,可以让我们轻松调度正在运行的任务 假如你发现前 ...