HDU-6608 Fansblog(威尔逊定理+素数间隔+逆元)
即:当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p ),但是由于阶乘是呈爆炸增长的,其结论对于实际操作意义不大。
(Q!)*(Q+1)*(Q+2)*...*(P-1)=(p-1)!
得到Q!(mod P)=(((P-1)!)/(Q+1)*(Q=2)*(Q+3)*...*(P-1))(mod P)
Q!(mod P)=((P-1)/(Q+1)*(Q=2)*(Q+3)*...*(P-1))(mod P)
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 typedef long long ll;
7 const int maxn=1e7+10;
8 ll mod;
9 int prime[maxn+10],cnt;
10 int vis[maxn+10];
11 void get_prime()
12 {
13 cnt=0;
14 for(int i=2;i<=maxn;++i)
15 {
16 if(!vis[i])
17 prime[cnt++]=i;
18 for(int j=0;j<cnt&&(ll)i*prime[j]<=maxn;j++)
19 {
20 vis[i*prime[j]]=1;
21 if(i%prime[j]==0) break;
22 }
23 }
24 }
25 bool is_prime(ll x)
26 {
27 for(int i=0;i<cnt&&(ll)prime[i]*prime[i]<=x;++i)
28 {
29 if(x%prime[i]==0)
30 return 0;
31 }
32 return 1;
33 }
34 ll mul(ll a,ll b)
35 {
36 ll res=0;
37 while(b)
38 {
39 if(b&1) res=(res+a)%mod;
40 a=(a+a)%mod;
41 b>>=1;
42 }
43 return res%mod;
44 }
45 ll poww(ll a,ll b)
46 {
47 ll res=1;
48 while(b)
49 {
50 if(b&1)
51 res=mul(res,a);
52 a=mul(a,a);
53 b>>=1;
54 }
55 return res;
56 }
57 int main()
58 {
59 int t;
60 ll p,q;
61 get_prime();
62 scanf("%d",&t);
63 while(t--)
64 {
65 scanf("%lld",&p);
66 mod=p;
67 q=p-1;
68 while(!is_prime(q)) q--;
69 ll ans=p-1;
70 for(ll i=q+1;i<=p-1;++i)
71 {
72 ans=mul(ans,poww(i,mod-2));
73 }
74 printf("%lld\n",ans);
75 }
76 return 0;
77 }

HDU-6608 Fansblog(威尔逊定理+素数间隔+逆元)的更多相关文章
- 2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度
题意 给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q! \ \% P$. 分析 暴力...说不定好的板子能过. 根据威尔逊定理,如果 $ ...
- 2019杭电多校第三场hdu6608 Fansblog(威尔逊定理)
Fansblog 题目传送门 解题思路 Q! % P = (P-1)!/(P-1)...(Q-1) % P. 因为P是质数,根据威尔逊定理,(P-1)!%P=P-1.所以答案就是(P-1)((P-1) ...
- hdu 2973"YAPTCHA"(威尔逊定理)
传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...
- hdu 2582(数论相关定理+素数筛选+整数分解)
f(n) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- HDU 6608:Fansblog(威尔逊定理)
Fansblog Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Subm ...
- HDU6608-Fansblog(Miller_Rabbin素数判定,威尔逊定理应用,乘法逆元)
Problem Description Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people ...
- HDU 5391 Zball in Tina Town【威尔逊定理】
<题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...
- HDU - 2973:YAPTCHA (威尔逊定理)
The math department has been having problems lately. Due to immense amount of unsolicited automated ...
- HDU 2973 YAPTCHA (威尔逊定理)
YAPTCHA Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- Centos 打开ssh 密码验证 和 root 登录
# 1 打开系统的密码验证功能: vim /etc/ssh/sshd_config #允许使用密码登录(注释此行 就是允许证书登录) PasswordAuthentication yes # 2 打开 ...
- 【Spring】Spring的事务管理 - 2、声明式事务管理(实现基于XML、Annotation的方式。)
声明式事务管理 文章目录 声明式事务管理 基于XML方式的声明式事务 基于Annotation方式的声明式事务 简单记录 - 简单记录-Java EE企业级应用开发教程(Spring+Spring M ...
- 【TOMCAT】windows7下tomcat6环境部署
首先,下载一个tomcat6的部署包 地址http://download.csdn.net/download/imliuqun123/10156942 需要部署安装的win7环境变量: 1.jdk环境 ...
- 惠普电脑(HP PHILIPS系列)安装ubuntu后无法连接WIFI解决方案(手动安装8821CE驱动)
一步一步来, 先说环境: 我的电脑是HP PHILIPS系列,ubuntu版本是16.04 背景: win10安装ubuntu后发现无法连接wifi(但win10系统可以连接WIFI),在ubuntu ...
- 词嵌入之Word2Vec
词嵌入要解决什么问题 在自然语言系统中,词被看作最为基本的单元,如何将词进行向量化表示是一个很基本的问题,词嵌入(word embedding)就是把词映射为低维实数域向量的技术. 下面先介绍几种词的 ...
- 1.8V转5V电平转换芯片,1.8V转5V的电源芯片
1.8V是一个比较低的电压,在电压供电电压中,1.8V电压的过于小了,在一些电子模块或者MCU中,无法达到供电电压,和稳压作用,PW5100就是可以在1.8V转5V的电平转换电路和芯片,最大可提供50 ...
- 转 6 jmeter元件的作用域与执行顺序
6 jmeter元件的作用域与执行顺序 元件的作用域 配置元件(config elements)会影响其作用范围内的所有元件.前置处理程序(Per-processors)在其作用范围内的每一个sa ...
- python(paramiko模块的简单使用)
#通过paramiko模块连接主机运行bash命令 import paramiko hostname = '192.168.88.31' port = 22 username = 'root' pas ...
- 网易新闻App架构重构实践:DDD正走向流行
网易新闻App架构重构实践:DDD正走向流行 https://mp.weixin.qq.com/s/FdwrT_xn3CQqpWoRVBttvQ 小智 InfoQ 2020-05-14 作者 | 小智 ...
- based on Greenlets (via Eventlet and Gevent) fork 孙子worker 比较 gevent不是异步 协程原理 占位符 placeholder (Future, Promise, Deferred) 循环引擎 greenlet 没有显式调度的微线程,换言之 协程
gevent GitHub - gevent/gevent: Coroutine-based concurrency library for Python https://github.com/gev ...