参考博客:https://blog.csdn.net/birdmanqin/article/details/97750844
题目链接:链接:http://acm.hdu.edu.cn/showproblem.php?pid=6608
 
威尔逊定理:在初等数论中,威尔逊定理给出了判定一个自然数是否为素数的充分必要条件。
即:当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p ),但是由于阶乘是呈爆炸增长的,其结论对于实际操作意义不大。
题意:T组样例。每组样例,给出一个素数P(1e9≤P≤1e14),Q是P的前一个素数求Q!%P。
思路:由威尔逊定理得:(P-1)!mod P=-1,即(P-1)!mod P=P-1又因为,
(Q!)*(Q+1)*(Q+2)*...*(P-1)=(p-1)!
得到Q!(mod P)=(((P-1)!)/(Q+1)*(Q=2)*(Q+3)*...*(P-1))(mod P)
又因为威尔逊定理,所以(P-1)!mod P==P-1
Q!(mod P)=((P-1)/(Q+1)*(Q=2)*(Q+3)*...*(P-1))(mod P)
因为两个素数之间的间隔不会超过300,我们从P-1开始一个个查验找Q。再把(P-1)乘上[Q,P-1]的逆元即可。注意因为数很大,所有涉及乘的地方都要用快速乘。
 
代码:
 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 typedef long long ll;
7 const int maxn=1e7+10;
8 ll mod;
9 int prime[maxn+10],cnt;
10 int vis[maxn+10];
11 void get_prime()
12 {
13 cnt=0;
14 for(int i=2;i<=maxn;++i)
15 {
16 if(!vis[i])
17 prime[cnt++]=i;
18 for(int j=0;j<cnt&&(ll)i*prime[j]<=maxn;j++)
19 {
20 vis[i*prime[j]]=1;
21 if(i%prime[j]==0) break;
22 }
23 }
24 }
25 bool is_prime(ll x)
26 {
27 for(int i=0;i<cnt&&(ll)prime[i]*prime[i]<=x;++i)
28 {
29 if(x%prime[i]==0)
30 return 0;
31 }
32 return 1;
33 }
34 ll mul(ll a,ll b)
35 {
36 ll res=0;
37 while(b)
38 {
39 if(b&1) res=(res+a)%mod;
40 a=(a+a)%mod;
41 b>>=1;
42 }
43 return res%mod;
44 }
45 ll poww(ll a,ll b)
46 {
47 ll res=1;
48 while(b)
49 {
50 if(b&1)
51 res=mul(res,a);
52 a=mul(a,a);
53 b>>=1;
54 }
55 return res;
56 }
57 int main()
58 {
59 int t;
60 ll p,q;
61 get_prime();
62 scanf("%d",&t);
63 while(t--)
64 {
65 scanf("%lld",&p);
66 mod=p;
67 q=p-1;
68 while(!is_prime(q)) q--;
69 ll ans=p-1;
70 for(ll i=q+1;i<=p-1;++i)
71 {
72 ans=mul(ans,poww(i,mod-2));
73 }
74 printf("%lld\n",ans);
75 }
76 return 0;
77 }
 

HDU-6608 Fansblog(威尔逊定理+素数间隔+逆元)的更多相关文章

  1. 2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度

    题意 给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q!  \ \% P$. 分析 暴力...说不定好的板子能过. 根据威尔逊定理,如果 $ ...

  2. 2019杭电多校第三场hdu6608 Fansblog(威尔逊定理)

    Fansblog 题目传送门 解题思路 Q! % P = (P-1)!/(P-1)...(Q-1) % P. 因为P是质数,根据威尔逊定理,(P-1)!%P=P-1.所以答案就是(P-1)((P-1) ...

  3. hdu 2973"YAPTCHA"(威尔逊定理)

    传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...

  4. hdu 2582(数论相关定理+素数筛选+整数分解)

    f(n) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. HDU 6608:Fansblog(威尔逊定理)

    Fansblog Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Subm ...

  6. HDU6608-Fansblog(Miller_Rabbin素数判定,威尔逊定理应用,乘法逆元)

    Problem Description Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people ...

  7. HDU 5391 Zball in Tina Town【威尔逊定理】

    <题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...

  8. HDU - 2973:YAPTCHA (威尔逊定理)

    The math department has been having problems lately. Due to immense amount of unsolicited automated ...

  9. HDU 2973 YAPTCHA (威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. spring cloud gateway 日志打印

    从api请求中获取访问的具体信息,是一个很常见的功能,这几天在研究springcloud,使用到了其中的gateway,刚好将研究的过程结果都记录下来 0. Version <parent> ...

  2. 【Linux】将ens33修改为eth0 网卡方法

    1.编辑 grub 配置文件 vim /etc/sysconfig/grub # 其实是/etc/default/grub的软连接 # 为GRUB_CMDLINE_LINUX变量增加2个参数,添加的内 ...

  3. kubernets与API服务器进行交互

    一  为何需要与kubernets集群的API服务器进行交互 1.1  kubernets提供了一种downapi的资源可以将pod的元数据渲染成环境变量或者downward卷的形式挂载到容器的文件系 ...

  4. ctfhub技能树—文件上传—.htaccess

    首先介绍一下.htaccess(来自百度百科) .htaccess文件(或者"分布式配置文件"),全称是Hypertext Access(超文本入口).提供了针对目录改变配置的方法 ...

  5. 集成多种协议、用于 USBC 端口的快充协议芯片IP2723

    1. 特性  快充规格  集成 QC4/QC4+输出快充协议 - 兼容 QC2.0/QC3.0 - 支持 Class B 电压等级  集成 FCP 输出快充协议  集成 SCP 输出快充协议  集成 ...

  6. 安卓开发视频教程!想找工作的你还不看这份资料就晚了!Android校招面试指南

    前言 准备面试其实已经准备了挺久了,当时打算面试准备了差不多以后,跟公司谈谈涨薪的事情,谈不拢的话,就年后直接找其他的公司.谁想到婚假还没休完,老板就在公司宣布了撤出上海的决定,愿意去深圳的就去,不愿 ...

  7. 华为三层交换机限制vlan段的指定端口

    屏蔽vlan 120这个段的ip的所有2333端口 [NTT_3L]int Vlanif 120 [NTT_3L-Vlanif120]dis this # interface Vlanif120 ip ...

  8. top命令详解-性能分析

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,常用于服务端性能分析. top命令说明 [www.linuxidc.com@linuxidc-t-tomcat-1 ...

  9. SQL Server 邮箱告警配置

    目录 配置数据库邮件 * 手动启用数据库邮件功能 * 配置数据库邮件 * 测试数据库邮件 实现 JOB 任务运行状态的检测 * 定义操作员 * 新建死锁警报 * 设置 SQL Server 代理 创建 ...

  10. 如何在Redis中实现事务

    如何在Redis中实现事务 - 微店技术团队 - SegmentFault 思否 https://segmentfault.com/a/1190000007429197