hdu3480 Division
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that

and the total cost of each subset is minimal.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
3 2
1 2 4
4 2
4 7 10 1
Case 2: 18
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 999999999
int a[10060],dp[10060][5060],s[10060][5060];
int main()
{
int n,m,i,j,T,len,k,num1=0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
}
sort(a+1,a+1+n);
for(i=1;i<=n;i++){
dp[i][1]=(a[i]-a[1])*(a[i]-a[1]);
s[i][1]=1;
}
for(j=2;j<=m;j++){
dp[j][j]=0;
s[n+1][j]=n;
for(i=n;i>j;i--){
dp[i][j]=inf;
for(k=s[i][j-1];k<=s[i+1][j];k++){
if(dp[i][j]>dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1])){
dp[i][j]=dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1]);
s[i][j]=k;
}
}
}
}
num1++;
printf("Case %d: %d\n",num1,dp[n][m]);
}
return 0;
}
hdu3480 Division的更多相关文章
- HDU3480 Division —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-3480 Division Time Limit: 10000/5000 MS (Java/Others) Memory ...
- hdu3480 Division(dp平行四边形优化)
题意:将n个数分成m段,每段的代价为最大值减最小值的平方,为代价最小是多少n<=10000 ,m<=5000 题解:先拍好序,从小到大,这样绝对是花费最小的,不过怎么样来做呢?一定很容易想 ...
- HDU-3480 Division (四边形不等式优化DP)
题目大意:将n个数分成m组,将每组的最大值与最小值的平方差加起来,求最小和. 题目分析:先对数排序.定义状态dp(i,j)表示前 j 个数分成 i 组得到的最小和,则状态转移方程为dp(i,j)=mi ...
- [HDU3480] Division [四边形不等式dp]
题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\le ...
- HDU3480 Division——四边形不等式或斜率优化
题目大意 将N个数分成M部分,使每部分的最大值与最小值平方差的和最小. 思路 首先肯定要将数列排序,每部分一定是取连续的一段,于是就有了方程 $\Large f(i,j)=min(f(i-1,k-1) ...
- HDU2829 Lawrence —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-2829 Lawrence Time Limit: 2000/1000 MS (Java/Others) Memory L ...
- HDU3480:Division——题解
http://acm.hdu.edu.cn/showproblem.php?pid=3480 将一列数划分成几个集合,这些集合的并集为该数列,求每个数列的(最大值-最小值)^2的和的最小值. 简单的d ...
- python from __future__ import division
1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...
- [LeetCode] Evaluate Division 求除法表达式的值
Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...
随机推荐
- xtrabackup 备份与恢复
书上摘抄 ---深入浅出mysql 448页 grant reload on *.* to 'backup'@'localhost' identified by '123456'; grant re ...
- MySQL全面瓦解18:自定义函数
定义 我们之前学习了MySQL的内置函数,非常丰富,满足了我们对数据操作的大部分需求. 但是如果有一些复杂的业务逻辑在数据库层面就可以完成,无需在程序层面完成的时候,这时候就可以写成MySQL自定义函 ...
- DOI技术扫盲一
DOI: desktop office intergration 桌面办公软件集成简单的将,就是我们在Windows桌面中打开的办公软件(如:word,excel,pdf等等)可以在SAP系统进 ...
- pscp 从win10远程传输文件到centos7,多个虚拟机之间传文件
一.将下载的pscp.exe拷贝到C:\Windows\System32 上传文件 win10 --> linux1 C:\Users\xy>pscp C:\BaiduNetdiskDow ...
- java 日期与时间操作
我们先来了解一下基本的概念 日期 2020-11-21 2020-11-22 时间 15:36:43 2020-11-21 15:36:43 时区 北京时间 2020-11-21 15:36:43 东 ...
- 理解Go的多态实现
总结两点: 在Go中,定义一个interface类型,该类型说明了它有哪些方法.使用时,在函数中,将该interface类型作为函数的形参,任意一个实现了interface类型的实参都能作为该inte ...
- 单台服务器-利用docker搭建Redis哨兵集群模式
前言:只有一台华为云服务器,所以打算创建三个容器来模拟三个服务器了. 一:拉取redis镜像 二:拉取redis.conf文件 放在自定义的目录下:wget -c http://download.re ...
- ldf和mdf文件怎么还原到sqlserver数据库
1.把mdf文件和ldf文件拷贝到数据库的默认路径C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA里:2.在sq ...
- 你可能会问,为什么不直接进入 CLOSED 状态,而要停留在 TIME_WAIT 这个状态?
你可能会问,为什么不直接进入 CLOSED 状态,而要停留在 TIME_WAIT 这个状态? 划重点,2MSL 的时间是从主机 1 接收到 FIN 后发送 ACK 开始计时的:如果在 TIME_WAI ...
- (转载)微软数据挖掘算法:Microsoft 神经网络分析算法原理篇(9)
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点 ...