题意:

传送门

已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v\)且\(i < n\)的最小的\(i\)是多少。

思路:

经过一些举例我们可以发现\(x_i = a^ix_0 + b\frac{a^i-1}{a-1}\mod p\),当\(a \neq 1\)可得\(a^i = \frac{(a-1)v+b}{(a-1)x_0+b}\mod p\)。再当\(a \geq 1\)时可用\(BSGS\)求解,其他直接特判。

但是因为\(q\)的存在,如果直接套模板复杂度\(O(\sqrt p + q\sqrt p)\),\(3e7*T\)必\(TLE\)。因为每组询问的预处理都相同,那么我们不妨把预处理扩大,这样每次查询所要暴力的次数就变小了。预处理大小设为\(1e6\),手写\(Hash\)更快。

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 300 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std; //BSGS
const int M = 5e6;
int hs[M], head[M], nex[M], id[M], top;
void _insert(ll x, int y){
int k = x % M;
hs[top] = x, id[top] = y, nex[top] = head[k], head[k] = top++;
}
int _find(ll x){
int k = x % M;
for(int i = head[k]; i != -1; i = nex[i]){
if(hs[i] == x) return id[i];
}
return -1;
}
ll ppow(ll a, ll b, ll mod){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
ll loop, up;
void preBSGS(ll p, ll a){ // a^x = b mod p
memset(head, -1, sizeof(head));
top = 1;
up = ceil(1e6);
ll t = 1;
for(int i = 0; i <= up; i++){
if(i == up) loop = t;
_insert(t, i);
t = 1LL * t * a % p;
}
}
ll BSGS(ll A, ll B, ll P){ // a^x = b mod p
ll m = ceil(P * 1.0 / 1e6);
ll obj = ppow(B, P - 2, P), x;
for(int i = 1; i <= m; i++){
obj = 1LL * obj * loop % P;
if((x = _find(obj)) != -1){
return 1LL * i * up - x;
}
}
return -1;
}
ll n, x0, a, b, p, Q;
int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%lld%lld%lld%lld%lld", &n, &x0, &a, &b, &p);
scanf("%lld", &Q);
preBSGS(p, a);
while(Q--){
ll v;
scanf("%lld", &v);
if(a == 0){
if(v == x0) printf("0\n");
else if(v == b && n - 1 >= 1) printf("1\n");
else printf("-1\n");
}
else if(a == 1){
v = ((v - x0) % p + p) % p;
if(b == 0){
printf("%d\n", v == 0? 0 : -1);
continue;
}
ll ans = 1LL * v * ppow(b, p - 2, p) % p;
printf("%lld\n", ans >= n? -1 : ans); }
else{
ll ret = (a * v % p - v + b) % p;
ret = ret * ppow((a * x0 - x0 + b) % p, p - 2, p) % p;
ret = (ret + p) % p;
ll ans = BSGS(a, ret, p);
printf("%lld\n", ans >= n? -1 : ans);
}
}
}
return 0;
}

2019牛客多校第五场C generator 2(BSGS)题解的更多相关文章

  1. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  2. 2019 牛客多校第五场 B generator 1

    题目链接:https://ac.nowcoder.com/acm/contest/885/B 题目大意 略. 分析 十进制矩阵快速幂. 代码如下 #include <bits/stdc++.h& ...

  3. 2019牛客多校第五场C generator 2 hash,bsgs模板

    generator 2 题意 给出\(x_0,a,b,p\),有方程\(x_i\equiv (a*x_{i-1}+b)(\% p)\),求最小的i,使得\(x_i=v\),不存在输出-1 分析 经过公 ...

  4. 2019牛客多校第五场B generator 十进制快速幂

    generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...

  5. 2019牛客多校第五场 generator 1——广义斐波那契循环节&&矩阵快速幂

    理论部分 二次剩余 在数论中,整数 $X$ 对整数 $p$ 的二次剩余是指 $X^2$ 除以 $p$ 的余数. 当存在某个 $X$,使得式子 $X^2 \equiv d(mod \ p)$ 成立时,称 ...

  6. 2019牛客多校第五场generator2——BSGS&&手写Hash

    题目 几乎原题 BZOJ3122题解 分析 先推一波公式,然后除去特殊情况分类讨论,剩下就是形如 $a^i \equiv b(mod \ p)$ 的方程,可以使用BSGS算法. 在标准的BSGS中,内 ...

  7. 2019牛客多校第五场F maximum clique 1 最大独立集

    题意:给你n个数,现在让你选择一个数目最大的集合,使得集合中任意两个数的二进制表示至少有两位不同,问这个集合最大是多大?并且输出具体方案.保证n个数互不相同. 思路:容易发现,如果两个数不能同时在集合 ...

  8. 2019牛客多校第五场G-subsequence 1 DP

    G-subsequence 1 题意 给你两个字符串\(s.t\),问\(s\)中有多少个子序列能大于\(t\). 思路 令\(len1\)为\(s\)的子序列的长度,\(lent\)为\(t\)的长 ...

  9. 2019牛客多校第五场H - subsequence 2 拓扑

    H - subsequence 2 题意 要你使用前\(m\)个小写字母构造一个长度为\(n\)的字符串 有\(m*(m-1)/2\)个限制条件: \(c_{1} .c_{2}. len\):表示除去 ...

随机推荐

  1. Android事件分发机制三:事件分发工作流程

    前言 很高兴遇见你~ 本文是事件分发系列的第三篇. 在前两篇文章中,Android事件分发机制一:事件是如何到达activity的? 分析了事件分发的真正起点:viewRootImpl,Activit ...

  2. mysql 设置外键约束时如何删除数据

    Mysql中如果表和表之间建立的外键约束,则无法删除表及修改表结构 解决方法是在Mysql中取消外键约束: SET FOREIGN_KEY_CHECKS=0; 然后将原来表的数据导出到sql语句,重新 ...

  3. JavaScript中的深拷贝和浅拷贝!【有错误】还未修改!请逛其他园子!

    JavaScript中的深拷贝和浅拷贝! 浅拷贝 1.浅拷贝只是拷贝一层,更深层次对象级别的只拷贝引用.{也就是拷贝的是地址!简而言之就是在新的对象中修改深层次的值也会影响原来的对象!} // 2.深 ...

  4. Salt (cryptography)

    Salt (cryptography) Here is an incomplete example of a salt value for storing passwords. This first ...

  5. WPF入门学习(转)

    WPF基础知识 总结的学习WPF的几点基础知识: 1) C#基础语法知识(或者其他.NET支持的语言):这个是当然的了,虽然WPF是XAML配置的,但是总还是要写代码的,相信各位读者应该也都有这个基础 ...

  6. 非Windows系统 如何解压带中文密码和中文文件名的zip压缩文件

    数据科学交流群,群号:189158789 ,欢迎各位对数据科学感兴趣的小伙伴的加入! 一.安装unar软件包: Linux(Debian系列): apt install unarLinux(RedHa ...

  7. Weblogic漏洞利用

    Weblogic漏洞 Weblogic任意文件上传(CVE-2018-2894) 受影响版本 weblogic 10.3.6.0.weblogic 12.1.3.0.weblogic 12.2.1.2 ...

  8. 应急响应-PDCERF模型 (转)

    目录 应急响应流程 防御模型 SDL 应急响应流程 很多人认为应急响应就是脸上被黑的机器去查查什么情况,是不是被中了botnet病毒.是不是被人中了rootkit等,是不是被挂了webshell等.应 ...

  9. java 读取text内容

    public static String readToString(String fileName) { String encoding = "UTF-8"; File file ...

  10. idea2018 快捷键

    Alt+Enter将光标放到缺少包的错误提示处自动导入包Ctrl+Alt+Space光标处会有会出现界面提示需要补全的信息也可以在new完对象后使用.var后将会自动补 Ctrl+O可以选择父类的方法 ...