2019牛客多校第五场C generator 2(BSGS)题解
题意:
传送门
已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v\)且\(i < n\)的最小的\(i\)是多少。
思路:
经过一些举例我们可以发现\(x_i = a^ix_0 + b\frac{a^i-1}{a-1}\mod p\),当\(a \neq 1\)可得\(a^i = \frac{(a-1)v+b}{(a-1)x_0+b}\mod p\)。再当\(a \geq 1\)时可用\(BSGS\)求解,其他直接特判。
但是因为\(q\)的存在,如果直接套模板复杂度\(O(\sqrt p + q\sqrt p)\),\(3e7*T\)必\(TLE\)。因为每组询问的预处理都相同,那么我们不妨把预处理扩大,这样每次查询所要暴力的次数就变小了。预处理大小设为\(1e6\),手写\(Hash\)更快。
代码:
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 300 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std;
//BSGS
const int M = 5e6;
int hs[M], head[M], nex[M], id[M], top;
void _insert(ll x, int y){
int k = x % M;
hs[top] = x, id[top] = y, nex[top] = head[k], head[k] = top++;
}
int _find(ll x){
int k = x % M;
for(int i = head[k]; i != -1; i = nex[i]){
if(hs[i] == x) return id[i];
}
return -1;
}
ll ppow(ll a, ll b, ll mod){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
ll loop, up;
void preBSGS(ll p, ll a){ // a^x = b mod p
memset(head, -1, sizeof(head));
top = 1;
up = ceil(1e6);
ll t = 1;
for(int i = 0; i <= up; i++){
if(i == up) loop = t;
_insert(t, i);
t = 1LL * t * a % p;
}
}
ll BSGS(ll A, ll B, ll P){ // a^x = b mod p
ll m = ceil(P * 1.0 / 1e6);
ll obj = ppow(B, P - 2, P), x;
for(int i = 1; i <= m; i++){
obj = 1LL * obj * loop % P;
if((x = _find(obj)) != -1){
return 1LL * i * up - x;
}
}
return -1;
}
ll n, x0, a, b, p, Q;
int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%lld%lld%lld%lld%lld", &n, &x0, &a, &b, &p);
scanf("%lld", &Q);
preBSGS(p, a);
while(Q--){
ll v;
scanf("%lld", &v);
if(a == 0){
if(v == x0) printf("0\n");
else if(v == b && n - 1 >= 1) printf("1\n");
else printf("-1\n");
}
else if(a == 1){
v = ((v - x0) % p + p) % p;
if(b == 0){
printf("%d\n", v == 0? 0 : -1);
continue;
}
ll ans = 1LL * v * ppow(b, p - 2, p) % p;
printf("%lld\n", ans >= n? -1 : ans);
}
else{
ll ret = (a * v % p - v + b) % p;
ret = ret * ppow((a * x0 - x0 + b) % p, p - 2, p) % p;
ret = (ret + p) % p;
ll ans = BSGS(a, ret, p);
printf("%lld\n", ans >= n? -1 : ans);
}
}
}
return 0;
}
2019牛客多校第五场C generator 2(BSGS)题解的更多相关文章
- 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化
B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...
- 2019 牛客多校第五场 B generator 1
题目链接:https://ac.nowcoder.com/acm/contest/885/B 题目大意 略. 分析 十进制矩阵快速幂. 代码如下 #include <bits/stdc++.h& ...
- 2019牛客多校第五场C generator 2 hash,bsgs模板
generator 2 题意 给出\(x_0,a,b,p\),有方程\(x_i\equiv (a*x_{i-1}+b)(\% p)\),求最小的i,使得\(x_i=v\),不存在输出-1 分析 经过公 ...
- 2019牛客多校第五场B generator 十进制快速幂
generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...
- 2019牛客多校第五场 generator 1——广义斐波那契循环节&&矩阵快速幂
理论部分 二次剩余 在数论中,整数 $X$ 对整数 $p$ 的二次剩余是指 $X^2$ 除以 $p$ 的余数. 当存在某个 $X$,使得式子 $X^2 \equiv d(mod \ p)$ 成立时,称 ...
- 2019牛客多校第五场generator2——BSGS&&手写Hash
题目 几乎原题 BZOJ3122题解 分析 先推一波公式,然后除去特殊情况分类讨论,剩下就是形如 $a^i \equiv b(mod \ p)$ 的方程,可以使用BSGS算法. 在标准的BSGS中,内 ...
- 2019牛客多校第五场F maximum clique 1 最大独立集
题意:给你n个数,现在让你选择一个数目最大的集合,使得集合中任意两个数的二进制表示至少有两位不同,问这个集合最大是多大?并且输出具体方案.保证n个数互不相同. 思路:容易发现,如果两个数不能同时在集合 ...
- 2019牛客多校第五场G-subsequence 1 DP
G-subsequence 1 题意 给你两个字符串\(s.t\),问\(s\)中有多少个子序列能大于\(t\). 思路 令\(len1\)为\(s\)的子序列的长度,\(lent\)为\(t\)的长 ...
- 2019牛客多校第五场H - subsequence 2 拓扑
H - subsequence 2 题意 要你使用前\(m\)个小写字母构造一个长度为\(n\)的字符串 有\(m*(m-1)/2\)个限制条件: \(c_{1} .c_{2}. len\):表示除去 ...
随机推荐
- 集成多种协议、用于 USB-A 和 TYPE-C 双端口输出的快充协议芯片IP2726
1. 特性 支持 1A1C 支持 USB-A 和 TYPE-C 双端口输出 单口输出支持全部快充协议 双口同时插入时降压到 5V 快充规格 集成 QC2.0/QC3.0/QC4/QC4+输 ...
- python系统监控及邮件发送
python系统监控及邮件发送 #psutil模块是一个跨平台库,能轻松实现获取系统运行的进程和系统利用率 import psutil ...
- Cisco IOS
IOS Internetwork Operating System 互联网操作系统(基于UNIX系统) Cisco IOS 软件提供多种网络服务进而支持各种网络应用. Cisco IOS用户界面的基本 ...
- Ajax编程基础
目录 Ajax编程基础 传统网站中存在的问题 Ajax概述 Ajax的应用场景 Ajax的运行环境 Ajax运行原理及实现 Ajax运行原理 Ajax的实现步骤 1.创建Ajax对象 2.告诉Ajax ...
- NodeJS连接MongoDB数据库
NodeJS连接MongoDB数据库 连接数据库的js文件[我将其命名为(connect.js)] // 引入mongoose第三方模块 const mongoose = require('mongo ...
- 关于jmeter客户端实现中HttpClient4与Java的区别
如上图:jmeter客户端实现方式有三种,一种是java,一种是httpclient4,还有一种默认,我们来看一下java与httpclient4的区别: Java:选择压测时,链接是复用的(代码中的 ...
- WPF TabControl美化
<Window.Resources> <!-- TabItem的样式 --> <Style TargetType="{x:Type TabItem}" ...
- 简单makefile
https://www.cnblogs.com/prettyshuang/p/5552328.html#_label0
- IdentityServer4之Implicit和纯前端好像很配哦
前言 上一篇Resource Owner Password Credentials模式虽然有用户参与,但对于非信任的第三方的来说,使用这种模式是有风险的,所以相对用的不多:这里接着说说implicit ...
- 小麦苗数据库巡检脚本,支持Oracle、MySQL、SQL Server和PG等数据库
目录 一.巡检脚本简介 二.巡检脚本特点 三.巡检结果展示 1.Oracle数据库 2.MySQL数据库 3.SQL Server数据库 4.PG数据库 5.OS信息 四.脚本运行方式 1.Oracl ...