题目传送门

在一片广袤无垠的原野上,散落着N块磁石。

每个磁石的性质可以用一个五元组(x,y,m,p,r)描述,其中x,y表示其坐标,m是磁石的质量,p是磁力,r是吸引半径。

若磁石A与磁石B的距离不大于磁石A的吸引半径,并且磁石B的质量不大于磁石A的磁力,那么A可以吸引B。小取酒带着一块自己的磁石L来到了这片原野的(x0,y0)处,我们可以视磁石L的坐标为(x0,y0)。小取酒手持磁石L并保持原地不动,所有可以被L吸引的磁石将会被吸引过来。

在每个时刻,他可以选择更换任意一块自己已经获得的磁石(当然也可以是自己最初携带的L磁石)在(x0,y0)处吸引更多的磁石。

小取酒想知道,他最多能获得多少块磁石呢?

输入格式

第一行五个整数x0,y0,pL,rL,N,表示小取酒所在的位置,磁石L磁力、吸引半径和原野上散落磁石的个数。

接下来N行每行五个整数x,y,m,p,r,描述一块磁石的性质。

输出格式

输出一个整数,表示最多可以获得的散落磁石个数(不包含最初携带的磁石L)。

数据范围

\(1≤N≤250000, −10^9≤x,y≤10^9, 1≤m,p,r≤10^9\)

输入样例:

0 0 5 10 5
5 4 7 11 5
-7 1 4 7 8
0 2 13 5 6
2 -3 9 3 4
13 5 1 9 9

输出样例:

3

分析

将磁石按照质量排序,分成t块,然后对于一个磁石一定有一个k,使得前k-1块所有的磁石的质量都小于它的磁力,k+1块之后的磁石质量都比它磁力大,而对块内按照距离排序之后,只需要挨个扫就可以了,扫过的标记、加入队列,调整区间。但对于第k块,因为不是所有的质量都小于当前磁块的磁力,所以要全部扫一遍,直到距离大于磁力半径,该块不能被调整区间

#include <bits/stdc++.h>
using namespace std;
const int N = 250010;
struct node{
int x,y,m,p,r;
double dis;
}a[N];
int x0,y,n;
int L[N],R[N],v[N];
double S(int x){return 1.0*x * x;}
bool cmp(node a,node b){
return a.m < b.m;
}
bool cmp2(node a,node b){
return a.dis < b.dis;
}
int main(){
scanf("%d%d%d%d%d",&x0,&y,&a[0].p,&a[0].r,&n);
for(int i=1;i<=n;i++){
scanf("%d%d%d%d%d",&a[i].x,&a[i].y,&a[i].m,&a[i].p,&a[i].r);
a[i].dis = sqrt(S(a[i].x-x0)+S(a[i].y-y));
}
int t = sqrt(n);
for(int i=1;i<=t;i++){
L[i] = (i-1) * t + 1;
R[i] = i * t;
}
if(R[t] < n){
t ++;L[t] = R[t-1] + 1;R[t] =n;
}
sort(a+1,a+n+1,cmp);
for(int i=1;i<=t;i++){
sort(a+L[i],a+R[i]+1,cmp2);
}
int res = 0;
queue<int> q;
q.push(0);
while(!q.empty()){
int u = q.front();q.pop();
res++;
int r = a[u].r,p = a[u].p;
bool flag = true;//标记是否为前k-1块
for(int i=1;i<=t;i++){
if(!flag)break;
int j = L[i];
for(;j<=R[i];j++){
if(v[j])continue;
if(p >= a[j].m){
if(r >= a[j].dis){
v[j] = 1;q.push(j);
}else{
break;
}
}else{
flag = false;continue;//是第k块
}
}
if(flag)L[i] = j;//不是第k块就调整左坐标点
}
}
printf("%d\n",res-1);//减去原始的磁石
return 0;
}

AcWing 250 磁力快(分块)的更多相关文章

  1. CH#46 磁力块 分块

    正解:分块+bfs 解题报告: 先放个传送门,然后瞎扯淡下QAQ 突然感觉不停课大概是正确的选择QAQ 大概实在是没有天赋?明明都知道正解是分块甚至还听了下解法感觉理解了,再看一次依然没想到解法,,, ...

  2. CH #46A - 磁力块 - [分块]

    题目链接:传送门 描述在一片广袤无垠的原野上,散落着N块磁石.每个磁石的性质可以用一个五元组(x,y,m,p,r)描述,其中x,y表示其坐标,m是磁石的质量,p是磁力,r是吸引半径.若磁石A与磁石B的 ...

  3. Contest Hunter #46 T1 磁力块 [分块]

    描述 在一片广袤无垠的原野上,散落着N块磁石.每个磁石的性质可以用一个五元组(x,y,m,p,r)描述,其中x,y表示其坐标,m是磁石的质量,p是磁力,r是吸引半径.若磁石A与磁石B的距离不大于磁石A ...

  4. bzoj3276磁力 两种要求下的最大值:分块or线段树+拓扑

    进阶指南上的做法是分块的.. 但是线段树搞起来也挺快,将磁石按照距离排序,建立线段树,结点维护区间质量最小值的下标 进行拓扑,每次在可行的范围内在线段树中找到质量最小的下标取出,取出后再将线段树对应的 ...

  5. 『磁力块 bfs 分块』

    磁力块 Description 在一片广袤无垠的原野上,散落着N 块磁石.每个磁石的性质可以用一个五元组 (x,y,m,p,r)描述,其中x,y 表示其坐标,m 是磁石的质量,p 是磁力,r 是吸引半 ...

  6. AcWing 199. 余数之和 (除法分块)打卡

    给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod ...

  7. AcWing 251. 小Z的袜子| 分块+莫队

    传送门 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿. 终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命. 具体来说,小Z把这N只袜子从 ...

  8. 数列分块入门九题(一):LOJ6277~6279

    Preface 分块,一个神奇的暴力算法.可以把很多\(O(n^2)\)的数据结构题的暴力优化到常数极小的\(O(n\sqrt n)\).当一些毒瘤题无法用线段树,主席树,平衡树,树状数组...... ...

  9. BT中的磁力链接(转)

    注意:磁力链接不是迅雷的,而是BT网络中的一种协议. 磁力链接与种子文件 磁力链接并不是一个新概念,早在2002年,相关的标准草稿就已经制定了.但直到2012年海盗湾为规避版权问题删除了站点上的所有T ...

随机推荐

  1. NOIP初赛篇——05计算机语言

    程序 ​ 程序就是一系列的操作步骤,计算机程序就是由人实现规定的计算机完成某项工作的操作步骤.每一步骤的具体内容能够理解的指令来描述,这些指令告诉计算机"做什么"和"怎么 ...

  2. mysql修改sql_mode为宽松模式

    sql_mode ANSI TRADITIONAL STRICT_TRANS_TABLES sql_mode为空 最宽松的模式, 即使有错误既不会报错也不会有警告️ ANSI 宽松模式,对插入数据进行 ...

  3. STP、PVST、MST协议

    • STP:生成树协议        ○ 阻止环形链路的广播风暴    • PVST:VLAN生成树        ○ 是STP的进阶版不仅能阻止广播风暴,还可以做到基于VLAN进行流量均衡.     ...

  4. LeetCode解题Golang(1-10)

    前言 LeetCode题目个人答案(Golang版) 本篇预期记录 1-10 题, 持续更新 正文 1.两数之和(简单) https://leetcode-cn.com/problems/two-su ...

  5. 【Java基础】Eclipse 和数组

    Eclipse 和数组 Eclipse 安装和使用 ... 数组的概述 数组(Array):是多个相同类型数据按一定顺序排列的集合,并使用一个名字命名,并通过编号的方式对这些数据进行统一管理. 数组相 ...

  6. LeetCode344 反转字符串

    编写一个函数,其作用是将输入的字符串反转过来. 示例 1: 输入: "hello" 输出: "olleh" 示例 2: 输入: "A man, a p ...

  7. Azure Terraform(四)状态文件存储

    一,引言 我们都知道在执行部署计划之后,当前目录中就产生了名叫 "" 的 Terraform 的状态文件,该文件中记录了已部署资源的状态.默认情况下,在执行部署计划后,Terraf ...

  8. 日常采坑:.NetCore上传大文件

    一..NetCore上传大文件 .NetCore3.1 webapi 本地测试上传时,遇到一个坑,大点的文件直接失败,根本不走控制器方法. 二.大文件上传配置 IFormFile方式,vs IIS E ...

  9. linux最大打开文件句柄数

    linux最大打开文件句柄数,即打开文件数最大限制,就是规定的单个进程能够打开的最大文件句柄数量(Socket连接也算在里面,默认大小1024) liunx中文件句柄有两个限制,一种是用户级的,一种是 ...

  10. 【Linux】用find删除大于30天的文件

    1.删除文件命令: find 对应目录 -mtime +天数 -name "文件名" -exec rm -rf {} \; 实例命令:find /opt/soft/log/ -mt ...