题目链接:https://codeforces.com/contest/1379/problem/B

题意

给出三个正整数 $l,r,m$,判断在区间 $[l,r]$ 内是否有 $a,b,c$ 满足存在正整数 $n$,使得 $n \cdot a + b - c = m$ 。

题解

最容易想的一种情况是:

\begin{equation} {\lfloor \frac{m}{a} \rfloor} \cdot a + m\ \%\ a = m  \end{equation}

令 $b = l + m\ \%\ a,\ c = l$ 即可。

但是当 $m<a$ 时,${\lfloor \frac{m}{a} \rfloor} = n = 0$,不满足 $n$ 为正整数的要求,或者 $m\ \%\ a$ 较大,超出了 $[l,r]$ 区间,此时可以将原式变换为:

\begin{equation} {\lfloor \frac{m}{a} \rfloor} \cdot a + a - (a - m\ \%\ a) = m \nonumber \end{equation}

即,

\begin{equation} ({\lfloor \frac{m}{a} \rfloor} + 1) \cdot a - (a - m\ \%\ a) = m \end{equation}

因为是减去一个数,为了尽量不超出区间,令 $b = r - (a - m\ \%\ a),\ c = r$,并且此时 $n$ 一定 $\ge 1$ 。

代码

#include <bits/stdc++.h>
using ll = long long;
using namespace std; void solve() {
ll l, r, m; cin >> l >> r >> m;
for (ll a = l; a <= r; ++a) {
ll b = l + m % a;
ll c = l;
if (m / a > 0 and l <= b and b <= r) {
cout << a << ' ' << b << ' ' << c << "\n";
return;
}
b = r - (a - m % a);
c = r;
if (l <= b and b <= r) {
cout << a << ' ' << b << ' ' << c << "\n";
return;
}
}
} int main() {
int t; cin >> t;
while (t--) solve();
}

Codeforces Round #657 (Div. 2) B. Dubious Cyrpto(数论)的更多相关文章

  1. Codeforces Round #657 (Div. 2) C. Choosing flowers(贪心)

    题目链接:https://codeforces.com/contest/1379/problem/C 题意 有 $m$ 种花,每种花数量无限,第一次购买一种花收益为 $a_i$,之后每一次购买收益为 ...

  2. Codeforces Round #657 (Div. 2) A. Acacius and String(字符串)

    题目链接:https://codeforces.com/contest/1379/problem/A 题意 给出一个由 '?' 和小写字母组成的字符串,可以将 '?' 替换为小写字母,判断是否存在一种 ...

  3. Codeforces Round #276 (Div. 2)A. Factory(数论)

    这道题可以暴力的一直按要求的方法去做,做1000000次还不能整除m就认为永远不能整除m了(m不超过100000,循环1000000次比较安全了已经).这种方法可以AC. 下面深入的分析一下到底循环多 ...

  4. Codeforces Round #305 (Div. 2) E题(数论+容斥原理)

    E. Mike and Foam time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  5. Codeforces Round #305 (Div. 2) C题 (数论)

    C. Mike and Frog time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  6. Codeforces Round #599 (Div. 1) A. Tile Painting 数论

    C. Tile Painting Ujan has been lazy lately, but now has decided to bring his yard to good shape. Fir ...

  7. Codeforces Round #275 (Div. 2) A. Counterexample【数论/最大公约数】

    A. Counterexample time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  8. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  9. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

随机推荐

  1. vrp OS Switch Rotuer Application

    交换机可以隔离冲突与,路由器可以隔离广播域,这两种设备在企业网络中应用越来越广泛.随着越来越多的终端接入到网络中,网络设备的负担也越来越重,这时网络设备可以通过华为专有的VRP系统来提升运行效率. 通 ...

  2. [从源码学设计]蚂蚁金服SOFARegistry 之 ChangeNotifier

    [从源码学设计]蚂蚁金服SOFARegistry 之 ChangeNotifier 目录 [从源码学设计]蚂蚁金服SOFARegistry 之 ChangeNotifier 0x00 摘要 0x01 ...

  3. oracle数据库psu升级(本实验是将10.2.0.3.12升级到10.2.0.3.15)

    psu升级(本实验是将10.2.0.3.12升级到10.2.0.3.15) 一.解压安装包自定义存放路径为/home/oracle/yjb/psu/10.2.0.3.15cd /home/oracle ...

  4. oracle range分区表已经有了MAXVALUE 分区,如何添加分区?要不能删除MAXVALUE分区里的数据,不影响在线应用。

    来做个实验说明该问题:1.创建个分区表SQL> create table p_range_test 2 (id number,name varchar2(100)) 3 partition by ...

  5. python函数1-函数基础

  6. 原生工程接入Flutter实现混编

    前言 上半年我定的OKR目标是帮助团队将App切入Flutter,实现统一技术栈,变革成多端融合开发模式.Flutter目前是跨平台方案中最有潜力实现我们这个目标的,不管是Hybird还是React ...

  7. SAP中的密码输入框

    在SAP中的密码输入框,可分为两种情况: 1.用selection语句书写的选择屏幕上的密码输入框 实现的方式就是在AT SELECTION-SCREEN OUTPUT事件中写入如下代码: LOOP ...

  8. Flask之路由系统

    路由系统 路由的两种写法 1.第一种方法: def index(): return render_template('index.html') app.add_url_rule('/index', ' ...

  9. flask文件下载

    后端的代码 # coding:utf-8 from flask import Flask app = Flask(__name__) @app.route("/upload", m ...

  10. Docker容器日志清理方案

    Docker容器在运行过程中会产生很多日志,久而久之,磁盘空间就被占满了,以下分享docker容器日志清理的几种方法 删除日志 在linux上,容器日志一般存放在 /var/lib/docker/co ...