死锁案例 GAP 锁 没有就插入,存在就更新
https://mp.weixin.qq.com/s/2obpN57D8hyorCMnIu_YAg
死锁案例八
文 | 杨一 on 运维
转 | 来源:公众号yangyidba
一、前言
死锁其实是一个很有意思也很有挑战的技术问题,大概每个 DBA 和部分开发朋友都会在工作过程中遇见。关于死锁我会持续写一个系列的案例分析,希望能够对想了解死锁的朋友有所帮助。
二、案例分析
2.1 业务场景
业务上的主要逻辑:
首先执行插入数据,如果插入成功,则提交。如果插入的时候报唯一键冲突,则执行更新。 如果同时出现三个并发在执行数据初始化动作,sess1 插入成功,sess2 和 sess3 插入遇到唯一键冲突,插入失败,则都执行执行更新,于是出现死锁。
2.2 环境准备
MySQL 5.6.24 事务隔离级别为 RR
create table ty (id int not null primary key auto_increment ,c1 int not null default 0,c2 int not null default 0,c3 int not null default 0,unique key uc1(c1),unique key uc2(c2)) engine=innodb ;insert into ty(c1,c2,c3) values(1,3,4),(6,6,10),(9,9,14);
2.3 测试用例
为了方便分析死锁日志,三个会话插入的 c3 的值分别为1 2 3 ,生产上其实是相同的值。

2.4 死锁日志
2018-03-28 10:04:52 0x7f75bf2d9700*** (1) TRANSACTION:TRANSACTION 1870, ACTIVE 76 sec starting index readmysql tables in use 1, locked 1LOCK WAIT 3 lock struct(s), heap size 1136, 2 row lock(s)MySQL thread id 399265, OS thread handle 12, query id 9 localhost root updatingupdate ty set c3=5 where c1=4*** (1) WAITING FOR THIS LOCK TO BE GRANTED:RECORD LOCKS space id 28 page no 4 n bits 72 index uc1 of table `test`.`ty` trx id 1870 lock_mode X locks rec but not gap waiting*** (2) TRANSACTION:TRANSACTION 1871, ACTIVE 32 sec starting index read, thread declared inside InnoDB 5000mysql tables in use 1, locked 13 lock struct(s), heap size 1136, 2 row lock(s)MySQL thread id 399937, OS thread handle 16, query id 3 localhost root updatingupdate ty set c3=5 where c1=4*** (2) HOLDS THE LOCK(S):RECORD LOCKS space id 28 page no 4 n bits 72 index uc1 of table `test`.`ty` trx id 1871 lock mode S*** (2) WAITING FOR THIS LOCK TO BE GRANTED:RECORD LOCKS space id 28 page no 4 n bits 72 index uc1 of table `test`.`ty` trx id 1871 lock_mode X locks rec but not gap waiting*** WE ROLL BACK TRANSACTION (2)
其实单单从日志上查看只看到两个事务的 update 相互竞争,在缺乏业务逻辑场景的情况下,很难得到有效思路。
2.5 分析死锁日志
T2 s1 执行 insert 操作,检查唯一性且插入成功,持有 c1=4 记录行的行锁。
T3 s2 insert遇到唯一键冲突,申请加锁 Lock S Next-key Lock 日志显示为 index uc1 of table test.ty trx id 1870 lock mode S waiting
T4 与 s2 相同, s3 insert 遇到唯一键冲突,申请加锁 Lock S Next-key Lock 日志显示为 index uc1 of table test.ty trx id 1870 lock mode S waiting
T5 sess1 执行 commit 操作, 此时 sess2 和 sess3 同时获取 Lock S Next-key Lock。
T6 应用收到唯一键冲突,sess2 执行 update 操作需要申请 c=4 的行锁,与 sess3的持有的 Lock S Next-key Lock 不兼容,等待 sess3 释放Lock S Next-key Lock。
T7 与sess2 类似 sess3 执行update 操作需要申请 c=4 的行锁,与 sess2 的持有的 Lock S Next-key Lock 不兼容,等待 sess2 释放 Lock S Next-key Lock 。出现循环等待,发生死锁。
2.6 解决方法
本案例的解决方式其实和前文 死锁案例之七 一致,使用 insert on duplicate key。案例七与本案例导致死锁业务逻辑极为相似,为什么呢?因为都是同一组开发哥哥写的。
三、小结
导致死锁的根本原因是不同事务申请锁的顺序不一样出现循环等待,开发同学在设计高并发的业务场景时,需要着重思考这一点,并且尽量规避业务场景设计不合理导致死锁。
另外就是 insert 的加锁机制相对 update 其实比较复杂,需要多动手实践,理清加锁流程。
扩展阅读
1. 漫谈死锁
2. 如何阅读死锁日志
3. 死锁案例一
4. 死锁案例二
5. 死锁案例三
6. 死锁案例四
7. 死锁案例五
8. 死锁案例六
9. 死锁案例七
https://mp.weixin.qq.com/s/ZknxiA5RuRZpefbF1bM82Q
死锁案例七
一、前言
死锁,其实是一个很有意思也很有挑战的技术问题,大概每个 DBA 和部分开发同学都会在工作过程中遇见 。关于死锁我会持续写一个系列的案例分析,希望能够对想了解死锁的朋友有所帮助。
二、案例分析
2.1 业务场景
业务开发同学想同步数据,他们的逻辑是通过 update 更新操作,如果更新记录返回的 affect_rows为0,然后就调用 insert 语句进行插入初始化。如果插入失败则再进行更新操作,多个会话并发操作的情况下就出现死锁。
2.2 环境说明
MySQL 5.6.24 事务隔离级别为 RR
create table ty (id int not null primary key auto_increment ,c1 int not null default 0,c2 int not null default 0,c3 int not null default 0,unique key uc1(c1),unique key uc2(c2)) engine=innodb ;insert into ty(c1,c2,c3)values(1,3,4),(6,6,10),(9,9,14);
2.3 测试用例
2.4 死锁日志
2018-03-27 17:59:23 0x7f75bf39d700*** (1) TRANSACTION:TRANSACTION 1863, ACTIVE 76 sec insertingmysql tables in use 1, locked 1LOCK WAIT 4 lock struct(s), heap size 1136, 3 row lock(s), undo log entries 1MySQL thread id 382150, OS thread handle 56640, query id 28 localhost root updateinsert into ty (c1,c2,c3) values(3,4,2)*** (1) WAITING FOR THIS LOCK TO BE GRANTED:RECORD LOCKS space id 28 page no 5 n bits 72 index uc2 of table `test`.`ty` trx id 1863 lock_mode X locks gap before rec insert intention waiting*** (2) TRANSACTION:TRANSACTION 1864, ACTIVE 65 sec inserting, thread declared inside InnoDB 5000mysql tables in use 1, locked 13 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 1MySQL thread id 382125, OS thread handle 40032, query id 62 localhost root updateinsert into ty (c1,c2,c3) values(3,4,2)*** (2) HOLDS THE LOCK(S):RECORD LOCKS space id 28 page no 5 n bits 72 index uc2 of table `test`.`ty` trx id 1864 lock_mode X locks gap before rec*** (2) WAITING FOR THIS LOCK TO BE GRANTED:RECORD LOCKS space id 28 page no 4 n bits 72 index uc1 of table `test`.`ty` trx id 1864 lock mode S waiting*** WE ROLL BACK TRANSACTION (2)
2.5 分析死锁日志
首先我们要再次强调 insert 插入操作的加锁逻辑。
第一阶段: 唯一性约束检查,先申请 LOCK_S + LOCK_ORDINARY
第二阶段: 获取阶段一的锁并且 insert 成功之后,插入的位置有 GAP 锁:LOCK_INSERT_INTENTION,为了防止其他 insert 唯一键冲突。
新数据插入完成之后:LOCK_X + LOCK_REC_NOT_GAP
对于 insert 操作来说,若发生唯一约束冲突,则需要对冲突的唯一索引加上 S Next-key Lock。从这里会发现,即使是 RC 事务隔离级别,也同样会存在 Next-Key Lock 锁,从而阻塞并发。然而,文档没有说明的是,对于检测到冲突的唯一索引,等待线程在获得 S Lock 之后,还需要对下一个记录进行加锁,在源码中由函数row_ins_scan_sec_index_for_duplicate 进行判断.
其次 我们需要了解锁的兼容性矩阵。
从兼容性矩阵我们可以得到如下结论:
INSERT 操作之间不会有冲突。
GAP,Next-Key 会阻止 Insert。
GAP 和 Record,Next-Key 不会冲突。
Record 和 Record、Next-Key 之间相互冲突。
已有的 Insert 锁不阻止任何准备加的锁。
已经持有的 GAP 锁会阻塞插入意向锁 INSERT_INTENTION。
另外 对于通过唯一索引更新或者删除不存在的记录,会申请加上 GAP 锁。
分析
了解上面的基础知识,我们开始对死锁日志进行分析:
T1: sess1 通过唯一键更新数据,由于 c2=4 不存在,返回 affect row 为 0,MySQL 会申请(3,6)之间的 GAP 锁。
T2: sess2 的情况和 sess1 类似,也会申请(3,6)之间的 GAP 锁,从上面的兼容性矩阵来看两个 GAP 锁并不会冲突。
T3: sess1 根据 update 语句返回 affect row 为 0,执行 insert 操作,此时需要申请插入意向锁,sess2 会话持有的 GAP 锁和 sess1 申请的插入意向锁冲突,出现等待。
index uc2 of table test.ty trx id 1863 lock_mode X locks gap before rec insert intention waiting
T4:sess2 与 sess1类似,根据 update 语句返回 affect row 为 0,执行 insert 操作。 申请的插入意向锁与sess1 的 update 语句持有的 GAP 锁冲突。sess1(持有 GAP 锁),sess2(持有 GAP 锁),sess1(插入意向锁等待 sess2 的 GAP 锁释放) sess2(插入意向锁等待 sess1 的 GAP 锁释放) 构成循环等待,进而导致死锁。
2.6 解决方法
从业务场景的处理逻辑上看,业务需要发送两次请求一次 update,一次 insert 才能完成业务逻辑,不够友好和优化。
其实我们可以和开发同学沟通好,确认业务的幂等性,使用 insert on duplicate key的方式,没有就插入,存在就更新,一次调用即可完成之前 2 次操作的功能,提高性能。
三、小结
最后想说关于解决死锁问题的思路:
1. 具备扎实的锁相关的基础知识。
2. 单单根据死锁日志其实比较难以判断具体的 sql 执行情况,需要和开发同学沟通好,理清业务执行 sql 的逻辑,然后去模拟测试。
死锁案例 GAP 锁 没有就插入,存在就更新的更多相关文章
- InnoDB的锁机制浅析(二)—探索InnoDB中的锁(Record锁/Gap锁/Next-key锁/插入意向锁)
Record锁/Gap锁/Next-key锁/插入意向锁 文章总共分为五个部分: InnoDB的锁机制浅析(一)-基本概念/兼容矩阵 InnoDB的锁机制浅析(二)-探索InnoDB中的锁(Recor ...
- Gap 锁
14.3.1 InnoDB Locking InnoDB 锁 本章节描述InnoDB 使用的锁类型: Shared and Exclusive Locks Intention Locks Record ...
- MySQL死锁案例分析与解决方案
MySQL死锁案例分析与解决方案 现象: 数据库查询: SQL语句分析: mysql. 并发delete同一行记录,偶发死锁. delete from x_table where id=? ...
- Mysql加锁过程详解(7)-初步理解MySQL的gap锁
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Python并发编程-进程 线程 同步锁 线程死锁和递归锁
进程是最小的资源单位,线程是最小的执行单位 一.进程 进程:就是一个程序在一个数据集上的一次动态执行过程. 进程由三部分组成: 1.程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成 2.数据 ...
- GIL、死锁与递归锁
一.互斥锁 用互斥锁,目的:局部串行(保护自己的数据 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,竞争带来的结果就是错乱,如何控制,就是加锁处理(即 ...
- Python3 进程 线程 同步锁 线程死锁和递归锁
进程是最小的资源单位,线程是最小的执行单位 一.进程 进程:就是一个程序在一个数据集上的一次动态执行过程. 进程由三部分组成: 1.程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成 2.数据 ...
- [并发编程 - 多线程:信号量、死锁与递归锁、时间Event、定时器Timer、线程队列、GIL锁]
[并发编程 - 多线程:信号量.死锁与递归锁.时间Event.定时器Timer.线程队列.GIL锁] 信号量 信号量Semaphore:管理一个内置的计数器 每当调用acquire()时内置计数器-1 ...
- 26 python 初学(线程、同步锁、死锁和递归锁)
参考博客: www.cnblogs.com/yuanchenqi/articles/5733873.html 并发:一段时间内做一些事情 并行:同时做多件事情 线程是操作系统能够进行运算调度的基本单位 ...
随机推荐
- Dapper 返回Sql server 自增长ID 标识列SCOPE_IDENTITY
原理 使用SELECT SCOPE_IDENTITY(),取获取刚刚插入记录自增的主键 示例 entity.Create(); StringBuilder strSql = new StringBui ...
- 深入理解MySQL系列之锁
按锁思想分类 悲观锁 优点:适合在写多读少的并发环境中使用,虽然无法维持非常高的性能,但是在乐观锁无法提更好的性能前提下,可以做到数据的安全性 缺点:加锁会增加系统开销,虽然能保证数据的安全,但数据处 ...
- RestTemplate发起http请求中文乱码问题解决方案
RestTemplate restTemplate = new RestTemplate(); HttpHeaders headers = new HttpHeaders(); MediaType t ...
- Ext CheckBoxGroup使用
一.效果图展示 我这里主要是为了实现选择周期时间.如周一.周二.周三等 二.界面界面代码 下面就是我实现的代码,包含了界面.数据处理.回填数据等.可能架构的方式,您的代码和我的代码有差异,但是大体就是 ...
- C# ——获取各国时间
DateTime dt = TimeZoneInfo.ConvertTimeToUtc(DateTime.Now, TimeZoneInfo.Local); DateTime dt1 = TimeZo ...
- shell编程-bash教程入门
Shell脚本与Windows/Dos下的批处理相似,也就是用各类命令预先放入到一个文件中,方便一次性执行的一个程序文件,主要是方便管理员进行设置或者管理用的.但是它比Windows下的批处理更强大, ...
- java: Compilation failed: internal java compiler error
IDEA 编译项目出现java: Compilation failed: internal java compiler error 原因: 项目Java版本不一致 解决办法: 点击FIle> ...
- 孟德尔随机化(Mendelian Randomization) 统计功效(power)和样本量计算
孟德尔随机化(Mendelian Randomization) 统计功效(power)和样本量计算 1 统计功效(power)概念 统计功效(power)指的是在原假设为假的情况下,接受备择假设的概率 ...
- 转 linux终端 字符界面 显示乱码 .
方法一:配置SSH工具 SecureCRT中文版配置 [全局选项]→[默认会话]→[编辑默认设置]→[终端]→[外观]→[字体]→[新宋体 10pt CHINESE_GB2312]→[字符编码 UTF ...
- c3p0连接池使用:使用c3p0数据源步骤以及完成jdbcUtills类
1.使用c3p0数据源步骤): a.下载c3p0jar,官网下载:https://sourceforge.net/projects/c3p0/: b.导入jar包时,应该导入下面两个包: c.编写c3 ...