一张\(n*m\)的棋盘,有\(k\)个点不能被覆盖,问其余点能不能被\(1*2\)的小矩形完全覆盖,多测

这题先输入\(m\)是什么鬼啊!!!

其实是一个比较裸的二分图判定,把\(k\)个点挖去然后将剩余棋盘黑白染色,求二分图最大匹配数,若最大匹配数\(+k==n*m\)输出\(YES\)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
namespace red{
#define int long long
#define mid ((l+r)>>1)
inline int read()
{
int x=0;char ch,f=1;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-') f=0,ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
typedef pair<int,int> p;
const int N=50;
int n,m,k,ret;
int g[N][N];
p f[N][N];
bool vis[N][N];
int dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};
inline void dfs(int x,int y,int col)
{
g[x][y]=col;
for(int i=0;i<4;++i)
{
int tx=x+dx[i],ty=y+dy[i];
if(tx<1||tx>n||ty<1||ty>m) continue;
if(!g[tx][ty]) dfs(tx,ty,col^1);
}
}
inline bool find(int x,int y)
{
for(int i=0;i<4;++i)
{
int tx=x+dx[i],ty=y+dy[i];
if(g[tx][ty]==(g[x][y]^1))
{
if(!vis[tx][ty])
{
vis[tx][ty]=1;
if((f[tx][ty].first==0&&f[tx][ty].second==0)||find(f[tx][ty].first,f[tx][ty].second))
{
f[tx][ty]=p(x,y);
return 1;
}
}
}
}
return 0;
}
inline void main()
{
while(scanf("%lld%lld%lld",&m,&n,&k)==3)
{
memset(g,0,sizeof(g));
memset(f,0,sizeof(f));
ret=0;
for(int x,y,i=1;i<=k;++i)
{
x=read(),y=read();
g[x][y]=99;
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
if(!g[i][j]) dfs(i,j,2);
}
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
if(g[i][j]==2)
{
memset(vis,0,sizeof(vis));
if(find(i,j)) ++ret;
}
}
}
puts(ret*2+k==n*m?"YES":"NO");
}
}
}
signed main()
{
red::main();
return 0;
}

POJ2466 棋盘覆盖的更多相关文章

  1. bzoj 2706: [SDOI2012]棋盘覆盖 Dancing Link

    2706: [SDOI2012]棋盘覆盖 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 255  Solved: 77[Submit][Status] ...

  2. NYOJ 45 棋盘覆盖

    棋盘覆盖 水题,题不难,找公式难 import java.math.BigInteger; import java.util.Scanner; public class Main { public s ...

  3. 棋盘覆盖(大数阶乘,大数相除 + java)

    棋盘覆盖 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的 ...

  4. NYOJ 45 棋盘覆盖 模拟+高精度

    题意就不说了,中文题... 小白上讲了棋盘覆盖,于是我就挖了这题来做. 棋盘覆盖的推导不是很难理解,就是分治的思想,具体可以去谷歌下. 公式就是f(k) = f(k - 1) * 4 + 1,再化解下 ...

  5. 棋盘覆盖(一) ACM

    棋盘覆盖 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的2×2方格(图2为其中缺右下角的一个),去覆盖2k×2k未被覆盖过的方格,求 ...

  6. 棋盘覆盖问题(算法分析)(Java版)

    1.问题描述: 在一个2k×2k个方格组成的棋盘中,若有一个方格与其他方格不同,则称该方格为一特殊方格,且称该棋盘为一个特殊棋盘.显然特殊方格在棋盘上出现的位置有种情形.因而对任何 k≥0,有4k种不 ...

  7. CODEVS 2171 棋盘覆盖

    2171 棋盘覆盖 给出一张nn(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多少12的多米诺骨牌进行掩盖. 错误日志: 直接在模板上调整 \(maxn\) 时没有在相应邻接表数 ...

  8. 递归与分治策略之棋盘覆盖Java实现

    递归与分治策略之棋盘覆盖 一.问题描述 二.过程详解 1.棋盘如下图,其中有一特殊方格:16*16 . 2.第一个分割结果:8*8 3.第二次分割结果:4*4 4.第三次分割结果:2*2 5.第四次分 ...

  9. JavaScript编写棋盘覆盖

    一.前言 之前做了一个算法作业,叫做棋盘覆盖,本来需要用c语言来编写的,但是因为我的c语言是半桶水(哈哈),所以索性就把网上的c语言写法改成JavaScript写法,并且把它的覆盖效果显示出来 二.关 ...

随机推荐

  1. lua调用dll demo

    使用的是lua5.3 DllMain.cpp 1 //生成的dll 是 lua_add53.dll 2 //luaopen_lua_add 3 extern "C" { 4 #in ...

  2. MySQL视图详细介绍

    前言: 在MySQL中,视图可能是我们最常用的数据库对象之一了.那么你知道视图和表的区别吗?你知道创建及使用视图要注意哪些点吗?可能很多人对视图只是一知半解,想详细了解视图的同学看过来哟,本篇文章会详 ...

  3. 异常记录-Gradle依赖掉坑之旅

    前言 最近在项目中遇到了一个问题,死活拉不下来依赖,耗费了一整天,感觉自己真是菜的抠脚. 没想到今天脑子一清醒,刷刷的问题逐个击破了. 问题描述: 项目成员添加了新的依赖,然后我这边项目拉下来,bui ...

  4. vue 切换主题(换肤)功能

    一:先写好两个css样式放在static文件夹中 二:在index.html中添加css link链接 <link rel="stylesheet" id="sty ...

  5. Java开发环境搭建(若jdk8按默认安装后没有jre文件夹,卸载重装时选择完整安装)

    JDK下载与安装(JDK 8是主流,新版版就是增加了一些新特性) 卸载旧JDK 删除java的安装目录 删除JAVA_HOME 删除path下关于java的目录 在cmd命令行中输入java vers ...

  6. android intent-filter 注册网页链接打开app

    如下实现注册m.hao123.com的链接: <intent-filter><category android:name="android.intent.category. ...

  7. a标签禁用

    a标签禁用可以使用CSS3的特性来控制 <a class="disabled">我是a标签</a> a.disabled { pointer-events: ...

  8. git设置个人信息

    git config --global user.name "username" 设置下自己提交的用户名 git config --global user.email " ...

  9. 深度分析:面试90%被问到的 Session、Cookie、Token,看完这篇你就掌握了!

    Cookie 和 Session HTTP 协议是一种无状态协议,即每次服务端接收到客户端的请求时,都是一个全新的请求,服务器并不知道客户端的历史请求记录:Session 和 Cookie 的主要目的 ...

  10. 关于C# Span的一些实践

    Span这个东西出来很久了,居然因为5.0又火起来了.   相关知识 在大多数情况下,C#开发时,我们只使用托管内存.而实际上,C#为我们提供了三种类型的内存: 堆栈内存 - 最快速的内存,能够做到极 ...