Advances and Open Problems in Federated Learning
挖个大坑,等有空了再回来填。心心念念的大综述呀(吐血三升)!
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!
项目地址:https://github.com/open-intelligence/federated-learning-chinese
具体内容参见项目地址,欢迎大家在项目的issue上提出问题!!!

Abstract
联邦学习(FL)是一种机器学习环境,其中许多客户端(如移动设备或整个组织)在中央服务器(如服务提供商)的协调下协同训练模型,同时保持训练数据去中心化。FL体现了集中数据收集和最小化的原则,可以减轻传统的中心化机器学习和数据科学方法带来的许多系统隐私风险和成本。在FL研究爆炸式增长的推动下,本文讨论了近年来的进展,提出了大量的开放性问题和挑战。
Contents
1 Introduction
1.1 The Cross-Device Federated Learning Setting
1.1.1 The Lifecycle of a Model in Federated Learning
1.1.2 A Typical Federated Training Process
1.2 Federated Learning Research
1.3 Organization
2 Relaxing the Core FL Assumptions: Applications to Emerging Settings and Scenarios
2.1 Fully Decentralized / Peer-to-Peer Distributed Learning
2.1.1 Algorithmic Challenges
2.1.2 Practical Challenges
2.2 Cross-Silo Federated Learning
2.3 Split Learning
3 Improving Efficiency and Effectiveness
3.1 Non-IID Data in Federated Learning
3.1.1 Strategies for Dealing with Non-IID Data
3.2 Optimization Algorithms for Federated Learning
3.2.1 Optimization Algorithms and Convergence Rates for IID Datasets
3.2.2 Optimization Algorithms and Convergence Rates for Non-IID Datasets
3.3 Multi-Task Learning, Personalization, and Meta-Learning
3.3.1 Personalization via Featurization
3.3.2 Multi-Task Learning
3.3.3 Local Fine Tuning and Meta-Learning
3.3.4 When is a Global FL-trained Model Better?
3.4 Adapting ML Workflows for Federated Learning
3.4.1 Hyperparameter Tuning
3.4.2 Neural Architecture Design
3.4.3 Debugging and Interpretability for FL
3.5 Communication and Compression
3.6 Application To More Types of Machine Learning Problems and Models
4 Preserving the Privacy of User Data
4.1 Actors, Threat Models, and Privacy in Depth
4.2 Tools and Technologies
4.2.1 Secure Computations
4.2.2 Privacy-Preserving Disclosures
4.2.3 Verifiability
4.3 Protections Against External Malicious Actors
4.3.1 Auditing the Iterates and Final Model
4.3.2 Training with Central Differential Privacy
4.3.3 Concealing the Iterates
4.3.4 Repeated Analyses over Evolving Data
4.3.5 Preventing Model Theft and Misuse
4.4 Protections Against an Adversarial Server
4.4.1 Challenges: Communication Channels, Sybil Attacks, and Selection
4.4.2 Limitations of Existing Solutions
4.4.3 Training with Distributed Differential Privacy
4.4.4 Preserving Privacy While Training Sub-Models
4.5 User Perception
4.5.1 Understanding Privacy Needs for Particular Analysis Tasks
4.5.2 Behavioral Research to Elicit Privacy Preferences
5 Robustness to Attacks and Failures
5.1 Adversarial Attacks on Model Performance
5.1.1 Goals and Capabilities of an Adversary
5.1.2 Model Update Poisoning
5.1.3 Data Poisoning Attacks
5.1.4 Inference-Time Evasion Attacks
5.1.5 Defensive Capabilities from Privacy Guarantees
5.2 Non-Malicious Failure Modes
5.3 Exploring the Tension between Privacy and Robustness
6 Ensuring Fairness and Addressing Sources of Bias
6.1 Bias in Training Data
6.2 Fairness Without Access to Sensitive Attributes
6.3 Fairness, Privacy, and Robustness
6.4 Leveraging Federation to Improve Model Diversity
6.5 Federated Fairness: New Opportunities and Challenges
7 Concluding Remarks
A Software and Datasets for Federated Learning
Advances and Open Problems in Federated Learning的更多相关文章
- Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
		
In federated learning, multiple client devices jointly learn a machine learning model: each client d ...
 - How to handle Imbalanced Classification Problems in machine learning?
		
How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...
 - 联邦学习(Federated Learning)
		
联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...
 - 联邦学习 Federated Learning 相关资料整理
		
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...
 - Federated Learning: Challenges, Methods, and Future Directions
		
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...
 - Overcoming Forgetting in Federated Learning on Non-IID Data
		
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...
 - Reliable Federated Learning for Mobile Networks
		
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...
 - 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits
		
Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...
 - 【流行前沿】联邦学习 Federated Learning with Only Positive Labels
		
核心问题:如果每个用户只有一类数据,如何进行联邦学习? Felix X. Yu, , Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar ...
 
随机推荐
- 02_Linux实操篇
			
第五章 VI和VIM编辑器 5.1. VI和VIM基本介绍 Vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本编辑器.由于对Unix及Linux系统的任何版本,Vi ...
 - Webpack 原理浅析
			
作者: 凹凸曼 - 风魔小次郎 背景 Webpack 迭代到4.x版本后,其源码已经十分庞大,对各种开发场景进行了高度抽象,阅读成本也愈发昂贵.但是为了了解其内部的工作原理,让我们尝试从一个最简单的 ...
 - Hyper-V设置固定IP
			
win+x以管理员启动PowerShell 创建虚拟交换机,等同于在Hyper-V管理器界面中新建虚拟网络交换机 New-VMSwitch -SwitchName "NAT-VM" ...
 - 电脑小知识:Windows 10是用什么语言写的?到底有多少行代码?
			
这是微软的内核工程师 Axel Rietschin在Quora的一个回答. Windows 10 的code base 和Windows 8.x , 7 , Vista , XP , 2000 和Wi ...
 - 7.1 NOI模拟赛 凸包套凸包 floyd 计算几何
			
计算几何之所以难学 就是因为太抽象了 不够直观 而且情况很多 很繁琐 甚至有一些东西不清不楚.. 这道题注意到题目中的描述 一个鸽子在两个点所连直线上也算. 通过看题解 发现这个地方并非直线而是线段 ...
 - 可笑,你竟然不知道 Java 如何生成 UUID
			
先看再点赞,给自己一点思考的时间,微信搜索[沉默王二]关注这个靠才华苟且的程序员.本文 GitHub github.com/itwanger 已收录,里面还有一线大厂整理的面试题,以及我的系列文章. ...
 - 如何简单理解spring aop和事务
			
用比喻的方法理解吧: 初学者的理解,仅仅为了个人好记 aop:由三部分组成:工具箱,工人,为工人分配工具 tx事务:由四部分组成:管理者,制度,工人,向工人通知管理制度 为什么这样理解呢?个人觉得好 ...
 - NuGet Package Explorer 中文版
			
Id:NuGet Package Explorer 中文版 Description:基于原版 5.7.170 的绿色中文版,无任何‘添加剂’ Version:5.7.170 Download:Gith ...
 - 032_go语言中的定时器
			
代码演示 package main import "fmt" import "time" func main() { timer1 := time.NewTim ...
 - 1. JDK基础说明
			
1. JDK基础说明 版本及新特性获取 作为技术人,关注新技术必不可少,那么最佳的途径...看下面. 在 Oracle Java 官方站点有这个非常好的引导地图 官方站点 https://docs.o ...