挖个大坑,等有空了再回来填。心心念念的大综述呀(吐血三升)!

郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!

项目地址:https://github.com/open-intelligence/federated-learning-chinese

具体内容参见项目地址,欢迎大家在项目的issue上提出问题!!!

Abstract

  联邦学习(FL)是一种机器学习环境,其中许多客户端(如移动设备或整个组织)在中央服务器(如服务提供商)的协调下协同训练模型,同时保持训练数据去中心化。FL体现了集中数据收集和最小化的原则,可以减轻传统的中心化机器学习和数据科学方法带来的许多系统隐私风险和成本。在FL研究爆炸式增长的推动下,本文讨论了近年来的进展,提出了大量的开放性问题和挑战。

Contents

1 Introduction

  1.1 The Cross-Device Federated Learning Setting

    1.1.1 The Lifecycle of a Model in Federated Learning

    1.1.2 A Typical Federated Training Process

  1.2 Federated Learning Research

  1.3 Organization

2 Relaxing the Core FL Assumptions: Applications to Emerging Settings and Scenarios

  2.1 Fully Decentralized / Peer-to-Peer Distributed Learning

    2.1.1 Algorithmic Challenges

    2.1.2 Practical Challenges

  2.2 Cross-Silo Federated Learning

  2.3 Split Learning

3 Improving Efficiency and Effectiveness

  3.1 Non-IID Data in Federated Learning

    3.1.1 Strategies for Dealing with Non-IID Data

  3.2 Optimization Algorithms for Federated Learning

    3.2.1 Optimization Algorithms and Convergence Rates for IID Datasets

    3.2.2 Optimization Algorithms and Convergence Rates for Non-IID Datasets

  3.3 Multi-Task Learning, Personalization, and Meta-Learning

    3.3.1 Personalization via Featurization

    3.3.2 Multi-Task Learning

    3.3.3 Local Fine Tuning and Meta-Learning

    3.3.4 When is a Global FL-trained Model Better?

  3.4 Adapting ML Workflows for Federated Learning

    3.4.1 Hyperparameter Tuning

    3.4.2 Neural Architecture Design

    3.4.3 Debugging and Interpretability for FL

  3.5 Communication and Compression

  3.6 Application To More Types of Machine Learning Problems and Models

4 Preserving the Privacy of User Data

  4.1 Actors, Threat Models, and Privacy in Depth

  4.2 Tools and Technologies

    4.2.1 Secure Computations

    4.2.2 Privacy-Preserving Disclosures

    4.2.3 Verifiability

  4.3 Protections Against External Malicious Actors

    4.3.1 Auditing the Iterates and Final Model

    4.3.2 Training with Central Differential Privacy

    4.3.3 Concealing the Iterates

    4.3.4 Repeated Analyses over Evolving Data

    4.3.5 Preventing Model Theft and Misuse

  4.4 Protections Against an Adversarial Server

    4.4.1 Challenges: Communication Channels, Sybil Attacks, and Selection

    4.4.2 Limitations of Existing Solutions

    4.4.3 Training with Distributed Differential Privacy

    4.4.4 Preserving Privacy While Training Sub-Models

  4.5 User Perception

    4.5.1 Understanding Privacy Needs for Particular Analysis Tasks

    4.5.2 Behavioral Research to Elicit Privacy Preferences

5 Robustness to Attacks and Failures

  5.1 Adversarial Attacks on Model Performance

    5.1.1 Goals and Capabilities of an Adversary

    5.1.2 Model Update Poisoning

    5.1.3 Data Poisoning Attacks

    5.1.4 Inference-Time Evasion Attacks

    5.1.5 Defensive Capabilities from Privacy Guarantees

  5.2 Non-Malicious Failure Modes

  5.3 Exploring the Tension between Privacy and Robustness

6 Ensuring Fairness and Addressing Sources of Bias

  6.1 Bias in Training Data

  6.2 Fairness Without Access to Sensitive Attributes

  6.3 Fairness, Privacy, and Robustness

  6.4 Leveraging Federation to Improve Model Diversity

  6.5 Federated Fairness: New Opportunities and Challenges

7 Concluding Remarks

A Software and Datasets for Federated Learning

Advances and Open Problems in Federated Learning的更多相关文章

  1. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning

    In federated learning, multiple client devices jointly learn a machine learning model: each client d ...

  2. How to handle Imbalanced Classification Problems in machine learning?

    How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...

  3. 联邦学习(Federated Learning)

    联邦学习简介        联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...

  4. 联邦学习 Federated Learning 相关资料整理

    本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...

  5. Federated Learning: Challenges, Methods, and Future Directions

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...

  6. Overcoming Forgetting in Federated Learning on Non-IID Data

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...

  7. Reliable Federated Learning for Mobile Networks

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...

  8. 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits

    Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...

  9. 【流行前沿】联邦学习 Federated Learning with Only Positive Labels

    核心问题:如果每个用户只有一类数据,如何进行联邦学习? Felix X. Yu, , Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar ...

随机推荐

  1. luogu P2973 [USACO10HOL]Driving Out the Piggies G 驱逐猪猡

    luogu LINK:驱逐猪猡 bzoj LINK:猪猪快跑 问题是在1时刻有个炸蛋在1号点 这个炸弹有p/q的概率爆炸 如果没有爆炸 那么会有1/di的概率选择一条边跳到另外一个点上重复这个过程. ...

  2. MYSQL-MGR架构配置

    MGR安装:机器列表:pc-s4 s4 --2pc-s3 s3 --1pc-s1 s1 --1pc-s2 s2 --1 1,为初始化搭建,2,为后续添加 对1 三个数据库先进行初始化========= ...

  3. 类加载Class Loading

    JVM 何时.如何把 Class 文件加载到内存,形成可以直接使用的 Java 类型,并开始执行代码? ​ 类的生命周期 加载 - 连接(验证.准备.解析)- 初始化 - 使用 - 卸载. 注意,加载 ...

  4. Android 菜单的使用

    有时间就随笔记录自己遇到的问题和所学的知识哈. 这是对本牛崽知识的提升也可以给其他牛牛们来点鸡汤和开胃菜. 菜单Menu的创建 首先menu是属于布局的嘛,所以嘞,咱们得在res(也就是布局资源)创建 ...

  5. java引用数据类型之Scanner与Random

    一 Scanner类 引用数据类型的使用 与定义基本数据类型变量不同,引用数据类型的变量定义及赋值有一个相对固定的步骤或格式. 数据类型  变量名  =  new 数据类型(); 每种引用数据类型都s ...

  6. 2020-07-14:es用过冷热分离吗?假如现在有些数据热变冷,有些数据冷变热,怎么解决?

    福哥答案2020-07-14: 热变冷: 有x台机器tag设置为hot. 有y台机器tag设置为cool. hot集群中只存最近两天的. 有一个定时任务每天将前一天的索引标记为cool. es看到有新 ...

  7. C#LeetCode刷题之#349-两个数组的交集(Intersection of Two Arrays)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4042 访问. 给定两个数组,编写一个函数来计算它们的交集. 输入 ...

  8. JavaScript 回调函数的简单示例

    回调函数 回调函数也被称为高阶函数 所谓高阶函数,就是说值 函数作为参数被传递或者返回值输出 操作函数的函数称为 高阶函数 把一段可执行的代码(一个函数)作为参数传递给其他的代码(另一个函数),并在需 ...

  9. python 文件读写with open模式r,r+,w,w+,a,a+的区别

    模式 可做操作 若文件不存在 是否覆盖 r 只能读 报错 - r+ 可读可写 报错 是 w 只能写 创建 是 w+ 可读可写 创建 是 a 只能写 创建 否,追加写 a+ 可读可写 创建 否,追加写

  10. menset与fill

    menset函数一般只对int型数组进行0.-1的赋值.原因:menset对数组是按字节赋值,对每个字节的赋值是相同的,故int的4个字节全部被赋相同的值,而0正好二进制编码全为0,-1的二进制编码全 ...