Advances and Open Problems in Federated Learning
挖个大坑,等有空了再回来填。心心念念的大综述呀(吐血三升)!
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!
项目地址:https://github.com/open-intelligence/federated-learning-chinese
具体内容参见项目地址,欢迎大家在项目的issue上提出问题!!!

Abstract
联邦学习(FL)是一种机器学习环境,其中许多客户端(如移动设备或整个组织)在中央服务器(如服务提供商)的协调下协同训练模型,同时保持训练数据去中心化。FL体现了集中数据收集和最小化的原则,可以减轻传统的中心化机器学习和数据科学方法带来的许多系统隐私风险和成本。在FL研究爆炸式增长的推动下,本文讨论了近年来的进展,提出了大量的开放性问题和挑战。
Contents
1 Introduction
1.1 The Cross-Device Federated Learning Setting
1.1.1 The Lifecycle of a Model in Federated Learning
1.1.2 A Typical Federated Training Process
1.2 Federated Learning Research
1.3 Organization
2 Relaxing the Core FL Assumptions: Applications to Emerging Settings and Scenarios
2.1 Fully Decentralized / Peer-to-Peer Distributed Learning
2.1.1 Algorithmic Challenges
2.1.2 Practical Challenges
2.2 Cross-Silo Federated Learning
2.3 Split Learning
3 Improving Efficiency and Effectiveness
3.1 Non-IID Data in Federated Learning
3.1.1 Strategies for Dealing with Non-IID Data
3.2 Optimization Algorithms for Federated Learning
3.2.1 Optimization Algorithms and Convergence Rates for IID Datasets
3.2.2 Optimization Algorithms and Convergence Rates for Non-IID Datasets
3.3 Multi-Task Learning, Personalization, and Meta-Learning
3.3.1 Personalization via Featurization
3.3.2 Multi-Task Learning
3.3.3 Local Fine Tuning and Meta-Learning
3.3.4 When is a Global FL-trained Model Better?
3.4 Adapting ML Workflows for Federated Learning
3.4.1 Hyperparameter Tuning
3.4.2 Neural Architecture Design
3.4.3 Debugging and Interpretability for FL
3.5 Communication and Compression
3.6 Application To More Types of Machine Learning Problems and Models
4 Preserving the Privacy of User Data
4.1 Actors, Threat Models, and Privacy in Depth
4.2 Tools and Technologies
4.2.1 Secure Computations
4.2.2 Privacy-Preserving Disclosures
4.2.3 Verifiability
4.3 Protections Against External Malicious Actors
4.3.1 Auditing the Iterates and Final Model
4.3.2 Training with Central Differential Privacy
4.3.3 Concealing the Iterates
4.3.4 Repeated Analyses over Evolving Data
4.3.5 Preventing Model Theft and Misuse
4.4 Protections Against an Adversarial Server
4.4.1 Challenges: Communication Channels, Sybil Attacks, and Selection
4.4.2 Limitations of Existing Solutions
4.4.3 Training with Distributed Differential Privacy
4.4.4 Preserving Privacy While Training Sub-Models
4.5 User Perception
4.5.1 Understanding Privacy Needs for Particular Analysis Tasks
4.5.2 Behavioral Research to Elicit Privacy Preferences
5 Robustness to Attacks and Failures
5.1 Adversarial Attacks on Model Performance
5.1.1 Goals and Capabilities of an Adversary
5.1.2 Model Update Poisoning
5.1.3 Data Poisoning Attacks
5.1.4 Inference-Time Evasion Attacks
5.1.5 Defensive Capabilities from Privacy Guarantees
5.2 Non-Malicious Failure Modes
5.3 Exploring the Tension between Privacy and Robustness
6 Ensuring Fairness and Addressing Sources of Bias
6.1 Bias in Training Data
6.2 Fairness Without Access to Sensitive Attributes
6.3 Fairness, Privacy, and Robustness
6.4 Leveraging Federation to Improve Model Diversity
6.5 Federated Fairness: New Opportunities and Challenges
7 Concluding Remarks
A Software and Datasets for Federated Learning
Advances and Open Problems in Federated Learning的更多相关文章
- Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
In federated learning, multiple client devices jointly learn a machine learning model: each client d ...
- How to handle Imbalanced Classification Problems in machine learning?
How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...
- 联邦学习(Federated Learning)
联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...
- 联邦学习 Federated Learning 相关资料整理
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...
- Federated Learning: Challenges, Methods, and Future Directions
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...
- Overcoming Forgetting in Federated Learning on Non-IID Data
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...
- Reliable Federated Learning for Mobile Networks
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...
- 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits
Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...
- 【流行前沿】联邦学习 Federated Learning with Only Positive Labels
核心问题:如果每个用户只有一类数据,如何进行联邦学习? Felix X. Yu, , Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar ...
随机推荐
- Kubernetes 教程:根据 PID 获取 Pod 名称
原文链接:https://fuckcloudnative.io/posts/find-kubernetes-pod-info-from-process-id/ 在管理 Kubernetes 集群的过程 ...
- 动态页面技术(EL/JSTL)
EL技术 EL 表达式概述 EL(Express Lanuage)表达式可以嵌入在jsp页面内部,减少jsp脚本的编写,EL出现的目的是要替代jsp页面中脚本(java代码)的编写. EL从域中取出数 ...
- ken桑带你读源码 之scrapy
开篇声明 文章讲解源码不一定从入口开始 主题更注重 思路讲解以及核心函数 ok? 废话到此为止 /scrapy/downloadermiddlewares/ 文件夹下是下载器的 中间件 ...
- pandas_分类与聚合
# 分组与聚合 import pandas as pd import numpy as np # 设置列对齐 pd.set_option("display.unicode.ambiguous ...
- PHP 标量类型与返回值类型声明
标量类型声明 默认情况下,所有的PHP文件都处于弱类型校验模式. PHP 7 增加了标量类型声明的特性,标量类型声明有两种模式: 强制模式 (默认) 严格模式 标量类型声明语法格式: declare( ...
- PHP array_splice() 函数
实例 从数组中移除元素,并用新元素取代它: <?php$a1=array("a"=>"red","b"=>"gr ...
- luogu P2607 [ZJOI2008]骑士 tarjan dp
LINK:骑士 本来是不打算写的 发现这道题在tarjan的时候有一个坑点 所以写出来记录一下. 可以发现图可能是不连通的 且一个连通块中是一个奇环树. 做法:类似tarjan找割点 然后把环给拉出来 ...
- three.js 自制骨骼动画(一)
上一篇郭先生解析了一下官方的骨骼动画案例,这篇郭先生就要做一个稍微复杂一点的骨骼动画了,就拿一个小人下手吧.在线案例请点击博客原文.话不多说先上大图 骨骼动画在GUI上面都有体现.制作骨骼动画的步骤在 ...
- IDEA使用GsonFormat
安装GsonFormat插件 因为下载了最新版的idea2020.1.3发现GsonFormat在Idea商店不见了,所以去jetbrains官网下载jar包来安装插件https://plugins. ...
- CentOS7系统管理与运维实战
CentOS7系统管理与运维实战 下载地址 https://pan.baidu.com/s/1KFHVI-XjGaLMrh39WuhyCw 扫码下面二维码关注公众号回复100007 获取分享码 本书目 ...