题目

思路

  • 这道题竟然是状压DP,本人以为是数论,看都没看就去打下一题的暴力了,哭

    \(A_i\)<=30,所以我们只需要考虑1~58个数,再往后选的话还不如选1更优,注意,1是可以重复选取的,因为题目中有一句话



    所以我们所枚举的因子只能包括1~58之间的质因子,而且每个质因子只能选一次,所以选完质因子之后,如果还有剩余的数,就用1填补,而1~58之间的质因子只有16个!!!我们对其进行状压。
  • f[i][j]代表处理到第i位j状态下的最优解
  • 预处理1~58之间的每一个数的因子,用state数组存放,方便处理,

    \(f[0][0]=0\),显然在一个数都不处理的情况下,所得价值为0;
  • dp过程和一般状压dp过程差不多,

    i枚举处理到的位数(min(16,n))-->16个质因子都选完不重复,最大为16

    S枚举前状态

    k枚举要选入的数

    判断合法性,!(S&state[k])为合法,显然,如果前一状态已经包含了k的质因子,不合法,

    然后进行转移--->
    f[i][S|state[k]]=min(f[i][S|state[k]],f[i-1][S]+abs(k-a[i]));

    对当前状态和上一状态加上当前数的贡献取最小值

  • 求转移到的状态(min(16,n))的最小值,可能转移完,也可能没有,如果转移完,直接输出就ok了,如果没有,剩下的用1填补,这就涉及到一开始数组排序方式的问题,如果从小到大,最后没有解决的几个值贡献会很大,所以应该从大到小,先解决大块头

    附上蒟蒻代码


#include<bits/stdc++.h>
using namespace std;
const int maxn=1<<20+1;
int prime[] = {0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
int f[18][maxn];
int n,a[105];
int state[maxn];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
sort(a+1,a+1+n);
reverse(a+1,a+1+n);
for(int i=1;i<=58;i++){
for(int j=1;j<=16;j++){
if(i<prime[j])break;
else if(i%prime[j]==0){
state[i]|=(1<<(j-1));
}
}
}
int lim=1<<16;
int ans=0x7f7f7f7f;
memset(f,0x3f,sizeof(f));
f[0][0]=0;
for(int i=1;i<=min(16,n);i++){
for(int S=0;S<lim;S++){
for(int k=1;k<=58;k++){
if(!(S&state[k])){
f[i][S|state[k]]=min(f[i][S|state[k]],f[i-1][S]+abs(k-a[i]));
}
}
}
}
for(int S=0;S<lim;S++){
ans=min(ans,f[min(16,n)][S]);
}
if(n>16){
for(int i=17;i<=n;i++)
ans+=abs(a[i]-1);
}
printf("%d\n",ans);
}

推荐状压DP题单(个人觉得比较好的题目,大佬手下留情)

和本题有关:[NOI2015]寿司晚宴

其他:

P1433 吃奶酪

[USACO06NOV]Corn Fields G

[SCOI2005]互不侵犯

[AHOI2009]中国象棋

[SDOI2009]学校食堂

[SDOI2009]Bill的挑战

[NOI2001]炮兵阵地

P2831 愤怒的小鸟

P2915 [USACO08NOV]Mixed Up Cows G

P3052 [USACO12MAR]Cows in a Skyscraper G

P3226 [HNOI2012]集合选数

P4163 [SCOI2007]排列

状压DP之LGTB 与序列的更多相关文章

  1. LGTB与序列 状压dp

    考试一看我就想到了状压dp.当时没有想到素数,以为每一位只有0~9这些数,就开始压了.后来发现是小于30,然后改到了15,发现数据一点不给面子,一个小点得数都没有,完美爆零.. 考虑到bi最多变成58 ...

  2. 2018.10.05 NOIP模拟 上升序列(状压dp)

    传送门 状压dp好题. 首先需要回忆O(nlogn)O(nlog n)O(nlogn)求lislislis的方法,我们会维护一个单调递增的ddd数组. 可以设计状态f(s1,s2)f(s1,s2)f( ...

  3. ZOJ3802 Easy 2048 Again (状压DP)

    ZOJ Monthly, August 2014 E题 ZOJ月赛 2014年8月 E题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?proble ...

  4. fzu2188 状压dp

    G - Simple String Problem Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  5. zoj3802:easy 2048 again(状压dp)

    zoj月赛的题目,非常不错的一个状压dp.. 题目大意是一个一维的2048游戏 只要有相邻的相同就会合并,合并之后会有奖励分数,总共n个,每个都可以取或者不取 问最终得到的最大值 数据范围n<= ...

  6. [poj1185]炮兵阵地_状压dp

    炮兵阵地 poj-1185 题目大意:给出n列m行,在其中添加炮兵,问最多能加的炮兵数. 注释:n<=100,m<=10.然后只能在平原的地方建立炮兵. 想法:第2到状压dp,++.这题显 ...

  7. [HNOI2012]集合选数(状压DP+构造)

    题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...

  8. our happy ending(状压dp)

    题意:给定一个n,k,l. 问有多少长度为n的序列满足选出一些数使得他们相加为k,数列中每个数都在1-l以内. Solution 正解还是很妙的. 状压dp,设dp[i][j]表示长度为i的序列,能表 ...

  9. NowCoder110E Pocky游戏 状压DP

    传送门 题意:给出$N$个数和一个长为$M$.所有数在$[1,N]$范围之内的正整数序列$a_i$,求出这$N$个数的一种排列$p_1...p_N$使得$\sum\limits_{i=2}^M |p_ ...

随机推荐

  1. Linux 用户管理命令-usermod和chage

    usermod和useradd命令的使用相类似,useradd针对的是新创建的用户可以修改他的信息,usermod则可以修改已经存在的用户的信息,选项也基本相同 usermod [选项] 用户名 -L ...

  2. 去摆摊吧,落魄的Java程序员

    真的,我也打算去摆摊,宣传语我都想好了.沉默王二,一枚有颜值却靠才华苟且的程序员,<Web 全栈开发进阶之路>作者,CSDN 明星博主,周排名第 4,总排名 40,这数据在众多互联网大咖面 ...

  3. SmokePing 快速搭建

    SmokePing介绍 smokeping是来监控IDC机房网络质量情况,可以从监控图上的延时与丢包情况分辨出机房的网络是否稳定,是否为多线,是否为BGP机房以及到各城市的三个运行商网络各是什么情况. ...

  4. error: RPC failed; curl 18 transfer closed with outstanding read data remaining的解决

    解决方案也是网上搜的,总结一下 一,加大缓存区git config --global http.postBuffer 524288000这个大约是500M二.少clone一些,–depth 1git ...

  5. Java并发相关知识点梳理和研究

    1. 知识点思维导图 (图比较大,可以右键在新窗口打开) 2. 经典的wait()/notify()/notifyAll()实现生产者/消费者编程范式深入分析 & synchronized 注 ...

  6. jQuery - Ajax ajax方法详解

    $.ajax()方法详解 jquery中的ajax方法参数总是记不住,这里记录一下. 1.url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. 2.type: 要求为Strin ...

  7. 171.Excel列表序号

    2020-03-17 Excel表列序号 A -> 1. B -> 2 Z -> 26 AA -> 27 ZY -> 701 示例: 输入: s = "LEET ...

  8. QTabWidget 中 关于Tab 关闭和添加的基本教程!

    QTabWidget是PyQt5 中使用较为广泛的容器之一,经常会在日常使用的软件中用到它:QTabwidget是由几个标签组成,每个标签可以当作一个界面,下面就是应用Qtabwidget的一个简单例 ...

  9. 【Vulnhub】FristiLeaks v1.3

    靶机信息 下载连接 https://download.vulnhub.com/fristileaks/FristiLeaks_1.3.ova.torrent https://download.vuln ...

  10. [每日一题2020.06.10]Codeforces Round #644 (Div. 3) ABCDEFG

    花了5个多少小时总算把div3打通一次( 题目链接 problem A 题意 : 两个x*y的矩形不能重叠摆放, 要放进一个正方形正方形边长最小为多少 先求n = min(2x, 2y, x+y) 再 ...