数学计算 LibreOJ - 2573
题目描述
小豆现在有一个数 x ,初始值为 1 。 小豆有 Q 次操作,操作有两种类型:
1 m: x=x×m ,输出 xmodM ;
2 pos: x=x/ 第 pos 次操作所乘的数(保证第 pos 次操作一定为类型 1,对于每一个类型 1 的操作至多会被除一次),输出 xmodM 。
Input
一共有 t 组输入。
对于每一组输入,第一行是两个数字 Q,M 。
接下来 Q 行,每一行为操作类型 op ,操作编号或所乘的数字 m (保证所有的输入都是合法的)。
Output
对于每一个操作,输出一行,包含操作执行后的 xmodM 的值
Example
样例输入
1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7
样例输入
2
1
2
20
10
1
6
42
504
84
Hint
对于 20% 的数据, 1≤Q≤500 ;
对于 100% 的数据, 1≤Q≤105,t≤5,M≤109 。
分析
这道题最简单的做法应该就是线段树了
对于第i次操作
如果是操作1,我们将编号为i的节点乘m,维护一个单点修改,最后输出区间乘积
如果是操作2,我们把编号为i的节点的权值改为1可以了,因为每一个节点只会修改一次,同样是输出区间乘积
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+5;
ll m,mod,q;
struct tre{
ll l,r,val;
}tr[maxn<<2];
void push_up(ll da){
tr[da].val=(tr[da<<1].val%mod*tr[da<<1|1].val%mod);
}
void build(ll da,ll le,ll ri){
tr[da].l=le;
tr[da].r=ri;
if(le==ri){
tr[da].val=1;
return;
}
ll mids=(le+ri)>>1;
build(da<<1,le,mids);
build(da<<1|1,mids+1,ri);
push_up(da);
}
void gai(ll da,ll bh,ll w){
if(tr[da].l==tr[da].r){
tr[da].val=w%mod;
return;
}
ll mids=(tr[da].l+tr[da].r)>>1;
if(bh<=mids) gai(da<<1,bh,w);
else gai(da<<1|1,bh,w);
push_up(da);
}
void gai2(ll da,ll bh,ll w){
if(tr[da].l==tr[da].r){
tr[da].val=tr[da].val%mod*w%mod;
return;
}
ll mids=(tr[da].l+tr[da].r)>>1;
if(bh<=mids) gai(da<<1,bh,w);
else gai(da<<1|1,bh,w);
push_up(da);
}
ll qh(ll da,ll le,ll ri){
if(le<=tr[da].l && ri>=tr[da].r){
return tr[da].val%mod;
}
ll ans=1;
ll mids=(tr[da].l+tr[da].r)>>1;
if(le<=mids) ans=ans*qh(da<<1,le,ri)%mod;
if(ri>mids) ans=ans*qh(da<<1|1,le,ri)%mod;
return ans%mod;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld",&q,&mod);
build(1,1,q);
for(ll i=1;i<=q;i++){
ll t;
scanf("%lld%lld",&t,&m);
if(t==1){
gai2(1,i,m);
printf("%lld\n",qh(1,1,i)%mod);
} else {
gai(1,m,1);
printf("%lld\n",qh(1,1,i)%mod);
}
}
}
return 0;
}
数学计算 LibreOJ - 2573的更多相关文章
- 理工科应该的知道的C/C++数学计算库(转)
理工科应该的知道的C/C++数学计算库(转) 作为理工科学生,想必有限元分析.数值计算.三维建模.信号处理.性能分析.仿真分析...这些或多或少与我们常用的软件息息相关,假如有一天你只需要这些大型软件 ...
- Shell之数学计算
本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~ 数学计算是Shell中比较常用的一种操作, 但是因为shell中所有的变量都默认为字符串, ...
- Shell脚本笔记(三)shell中的数学计算
shell中的数学计算 一.使用方括号 #!/bin/bash a= b= c= res=$[$a * ($c-$b)] echo $res 二.使用(()) +)) ((i=+)) b=$((-*) ...
- C语言中几个常用数学计算函数ceil(), floor(), round()的用法
最近在实现算法的过程中,遇到了使用几个数学计算函数,感觉挺有意思,就记下来 方便以后使用. ceil(x)返回不小于x的最小整数值(然后转换为double型). floor(x)返回不大于x的最大整数 ...
- BZOJ 5334--[Tjoi2018]数学计算(线段树)
5334: [Tjoi2018]数学计算 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 220 Solved: 147[Submit][Status ...
- 【BZOJ5334】数学计算(线段树)
[BZOJ5334]数学计算(线段树) 题面 BZOJ 洛谷 题解 简单的线段树模板题??? 咕咕咕. #include<iostream> #include<cstdio> ...
- [LeetCode] 数学计算模拟类问题:加法,除法和幂,注意越界问题。题 剑指Offer,Pow(x, n) ,Divide Two Integers
引言 数学计算的模拟类题目,往往是要求实现某种计算(比如两数相除),实现的过程中会有所限定,比如不允许乘法等等. 这类题目首先要注意计算过程中本身的特殊情况.比如求相除,则必须首先反映过来除数不能为0 ...
- Math类的数学计算功能
//Math类的数学计算功能 public class MathTest { public static void main(String[] args) { /*----------下面是三角运算- ...
- bzoj 5334 数学计算
bzoj 5334 数学计算 开始想直接模拟过程做,但模数 \(M\) 不一定为质数,若没有逆元就 \(fAKe\) 掉了. 注意到操作 \(2\) 是删除对应的操作 \(1\) ,相当于只有 \(1 ...
随机推荐
- 基于EntityFramework 6 Code First实现动态建库,分库,数据库自动迁移
一.前言 公司原本有一个"xx系统",ORM使用EntityFramework,Code First模式.该系统是针对某个客户企业的,现要求该系统支持多个企业使用,但是又不能给每个 ...
- 如何在Linux上安装Redis(内附详细教程)
前言 hello,好久不见,又断更了一段时间.同事大部分离职了,但是活还是一样,所以只能硬着头皮顶上.现在总算歇会了,决定开启Redis源码系列,希望不要啪啪啪打脸. 什么是redis? Redi ...
- 我们是如何做DevOps的?
一.DevOps的理解 DevOps的概念理解 DevOps 的概念在软件开发行业中逐渐流行起来.越来越多的团队希望实现产品的敏捷开发,DevOps 使一切成为可能.有了 DevOps ,团队可以定期 ...
- 对学长TD课程通(.apk)的评价
界面简介: 界面分为三个部分,第一部分是对课程表的添加,第二部分是对空闲教室的查询,第三部分是实时时间的展示和对软件的评价,实用性很强,仅限于本校学生,界面观赏性较差,从界面上对人的吸引力不够, 实用 ...
- 创建使用mysql表
1.展示所有数据库 show databases;2.选中数据库 use database_name(;)3.创建数据库 create database database_name;4.使用2选中数据 ...
- 双剑合璧 Nacos 结合 Sentinel 实现流量安全控制
Alibaba Sentinel 是一款高性能且轻量级的流量控制.熔断降级解决方案.是面向分布式服务架构的高可用流量控制组件. Sentinel 官网:https://sentinelguard.io ...
- Largest Allowed Area【模拟+二分】
Largest Allowed Area 题目链接(点击) 题目描述 A company is looking for land to build its headquarters. It has a ...
- 驱动开发 —— 从零开始(1) 配置vs20xx+wdkxx环境
网上教程很多.如何去安装如何去配置 但是也有些坑感觉并不是那么的完善 wdk+vs下载链接:https://docs.microsoft.com/zh-cn/windows-hardware/driv ...
- 利用Azure Functions和k8s构建Serverless计算平台
题记:昨晚在一个技术社区直播分享了"利用Azure Functions和k8s构建Serverless计算平台"这一话题.整个分享分为4个部分:Serverless概念的介绍.Az ...
- 深入了解C#(TPL)之Parallel.ForEach异步
前言 最近在做项目过程中使用到了如题并行方法,当时还是有点犹豫不决,因为平常使用不多, 于是借助周末时间稍微深入了下,发现我用错了,故此做一详细记录,希望对也不是很了解的童鞋在看到本文此文后不要再犯和 ...