题目描述

小豆现在有一个数 x ,初始值为 1 。 小豆有 Q 次操作,操作有两种类型:

1 m: x=x×m ,输出 xmodM ;

2 pos: x=x/ 第 pos 次操作所乘的数(保证第 pos 次操作一定为类型 1,对于每一个类型 1 的操作至多会被除一次),输出 xmodM 。

Input

一共有 t 组输入。

对于每一组输入,第一行是两个数字 Q,M 。

接下来 Q 行,每一行为操作类型 op ,操作编号或所乘的数字 m (保证所有的输入都是合法的)。

Output

对于每一个操作,输出一行,包含操作执行后的 xmodM 的值

Example

样例输入

1

10 1000000000

1 2

2 1

1 2

1 10

2 3

2 4

1 6

1 7

1 12

2 7

样例输入

2

1

2

20

10

1

6

42

504

84

Hint

对于 20% 的数据, 1≤Q≤500 ;

对于 100% 的数据, 1≤Q≤105,t≤5,M≤109 。

分析

这道题最简单的做法应该就是线段树了

对于第i次操作

如果是操作1,我们将编号为i的节点乘m,维护一个单点修改,最后输出区间乘积

如果是操作2,我们把编号为i的节点的权值改为1可以了,因为每一个节点只会修改一次,同样是输出区间乘积

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+5;
ll m,mod,q;
struct tre{
ll l,r,val;
}tr[maxn<<2];
void push_up(ll da){
tr[da].val=(tr[da<<1].val%mod*tr[da<<1|1].val%mod);
}
void build(ll da,ll le,ll ri){
tr[da].l=le;
tr[da].r=ri;
if(le==ri){
tr[da].val=1;
return;
}
ll mids=(le+ri)>>1;
build(da<<1,le,mids);
build(da<<1|1,mids+1,ri);
push_up(da);
}
void gai(ll da,ll bh,ll w){
if(tr[da].l==tr[da].r){
tr[da].val=w%mod;
return;
}
ll mids=(tr[da].l+tr[da].r)>>1;
if(bh<=mids) gai(da<<1,bh,w);
else gai(da<<1|1,bh,w);
push_up(da);
}
void gai2(ll da,ll bh,ll w){
if(tr[da].l==tr[da].r){
tr[da].val=tr[da].val%mod*w%mod;
return;
}
ll mids=(tr[da].l+tr[da].r)>>1;
if(bh<=mids) gai(da<<1,bh,w);
else gai(da<<1|1,bh,w);
push_up(da);
}
ll qh(ll da,ll le,ll ri){
if(le<=tr[da].l && ri>=tr[da].r){
return tr[da].val%mod;
}
ll ans=1;
ll mids=(tr[da].l+tr[da].r)>>1;
if(le<=mids) ans=ans*qh(da<<1,le,ri)%mod;
if(ri>mids) ans=ans*qh(da<<1|1,le,ri)%mod;
return ans%mod;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld",&q,&mod);
build(1,1,q);
for(ll i=1;i<=q;i++){
ll t;
scanf("%lld%lld",&t,&m);
if(t==1){
gai2(1,i,m);
printf("%lld\n",qh(1,1,i)%mod);
} else {
gai(1,m,1);
printf("%lld\n",qh(1,1,i)%mod);
}
}
}
return 0;
}

数学计算 LibreOJ - 2573的更多相关文章

  1. 理工科应该的知道的C/C++数学计算库(转)

    理工科应该的知道的C/C++数学计算库(转) 作为理工科学生,想必有限元分析.数值计算.三维建模.信号处理.性能分析.仿真分析...这些或多或少与我们常用的软件息息相关,假如有一天你只需要这些大型软件 ...

  2. Shell之数学计算

    本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~ 数学计算是Shell中比较常用的一种操作,  但是因为shell中所有的变量都默认为字符串, ...

  3. Shell脚本笔记(三)shell中的数学计算

    shell中的数学计算 一.使用方括号 #!/bin/bash a= b= c= res=$[$a * ($c-$b)] echo $res 二.使用(()) +)) ((i=+)) b=$((-*) ...

  4. C语言中几个常用数学计算函数ceil(), floor(), round()的用法

    最近在实现算法的过程中,遇到了使用几个数学计算函数,感觉挺有意思,就记下来 方便以后使用. ceil(x)返回不小于x的最小整数值(然后转换为double型). floor(x)返回不大于x的最大整数 ...

  5. BZOJ 5334--[Tjoi2018]数学计算(线段树)

    5334: [Tjoi2018]数学计算 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 220  Solved: 147[Submit][Status ...

  6. 【BZOJ5334】数学计算(线段树)

    [BZOJ5334]数学计算(线段树) 题面 BZOJ 洛谷 题解 简单的线段树模板题??? 咕咕咕. #include<iostream> #include<cstdio> ...

  7. [LeetCode] 数学计算模拟类问题:加法,除法和幂,注意越界问题。题 剑指Offer,Pow(x, n) ,Divide Two Integers

    引言 数学计算的模拟类题目,往往是要求实现某种计算(比如两数相除),实现的过程中会有所限定,比如不允许乘法等等. 这类题目首先要注意计算过程中本身的特殊情况.比如求相除,则必须首先反映过来除数不能为0 ...

  8. Math类的数学计算功能

    //Math类的数学计算功能 public class MathTest { public static void main(String[] args) { /*----------下面是三角运算- ...

  9. bzoj 5334 数学计算

    bzoj 5334 数学计算 开始想直接模拟过程做,但模数 \(M\) 不一定为质数,若没有逆元就 \(fAKe\) 掉了. 注意到操作 \(2\) 是删除对应的操作 \(1\) ,相当于只有 \(1 ...

随机推荐

  1. 呀,葵花宝典![IT项目经理成长晋升记2]

    走出办公室时,老吴让王小白认真看下公司的项目管理体系和质量管理体系培训材料.公司这几年连续通过了ISO质量体系认证,通过了CMMI3,已有一套完整的组织过程体系. 因为从投标开始,到公示,还有一周时间 ...

  2. SqlServer下一些实用的sql语句收集

    清理数据库日志 USE [master] ALTER DATABASE [表名] SET RECOVERY SIMPLE WITH NO_WAIT ALTER DATABASE [表名] SET RE ...

  3. mysql 大表mysqldump迁移方案

    场景 一张历史表product_history 500万数据,凌晨的才会将正式表的数据迁移到历史表,此次需求将历史表迁移到一个更便宜的数据库实例进行存储. 条件 1.此表不是实时写,凌晨才会更新 2. ...

  4. kafka架构、基本术语、消息存储结构

    1.kafka架构 kafka处理消息大概流程 生产者发送消息给kafka服务器 消费者从kafka服务器(broker)读取消息 kafka服务器依靠zookeeper集群进行服务协调管理 2.ka ...

  5. IDEA Gradle项目控制台输出乱码

    idea 更新到2019.2.3没有这个选项. 可以点击 help->edit custom vm options 然后加上 -Dfile.encoding=utf-8 重启一下就好了

  6. MFC基于CAsyncSocket套接字客户端代码示范

    MFC基于CAsyncSocket套接字客户端代码示范 https://blog.csdn.net/txwtech/article/details/93016190

  7. 无法解析的外部符号 "public: virtual struct CRuntimeClass * _

    SetupPropertyPage.obj : error LNK2001: 无法解析的外部符号 "public: virtual struct CRuntimeClass * __this ...

  8. 容器技术之Docker Machine

    前文我们聊了下docker容器的资源限制,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/13138725.html:今天我们来聊一聊docker machine ...

  9. JAVA设计模式 2【创建型】原型模式的理解与使用

    在本节中,我们将学习和使用原型模式:这一节学习的原型模式也是创建型 模式的其中之一.再次复习一下:创建型 模式就是描述如何去更好的创建一个对象. 我们都知道,在JAVA 语言中.使用new 关键字创建 ...

  10. #PHP 类的多继承实现之 traits.md

    TRAIT PHP本身是并不支持多继承的,也就是,一个类只能继承一个类,为了满足业务需求,后来有了一些解决方法,例如,链式继承,B继承A,然后C继承B,这样,C就同时继承了AB, 此外还有接口,因为接 ...