题意

写的比较清楚,我就不解释了。

\(\texttt{Data Range:}n\leq 10^4,m\leq 10^5,c\leq 10,k\leq 10^5\)

题解

注意到 \(c\) 的范围很小,而且把每种颜色的边抠出来发现是一个森林(准确的来说是每个连通块都是链),于是我们可以对每种颜色都开个 \(\texttt{LCT}\)。

然后这题就基本上是板子题了,但是这题细节很多,可能会花费你很多的调试时间。

有一个坑点就是当修改 \((u,v)\) 这条边的颜色的时候如果新的颜色等于原来的颜色无论怎样都是成功的,因为保证每一次操作后的图是满足性质的。

代码

#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=2e5+51;
struct Edge{
ll to,prev,col;
};
Edge ed[MAXN<<1];
ll n,m,c,qcnt,tot,u,v,w,op,col;
ll deg[MAXN][10],last[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
namespace LCT{
struct Node{
ll fa,mx,val,rv,sz;
ll ch[2];
};
struct LinkCutTree{
Node nd[MAXN];
ll st[MAXN];
#define ls nd[x].ch[0]
#define rs nd[x].ch[1]
inline bool nroot(ll x)
{
return nd[nd[x].fa].ch[0]==x||nd[nd[x].fa].ch[1]==x;
}
inline void update(ll x)
{
nd[x].mx=max(max(nd[x].val,nd[ls].mx),nd[rs].mx);
}
inline void reverse(ll x)
{
swap(ls,rs),nd[x].rv^=1;
}
inline void spread(ll x)
{
if(nd[x].rv)
{
ls?reverse(ls):(void)(1),rs?reverse(rs):(void)(1);
nd[x].rv=0;
}
}
inline void rotate(ll x)
{
ll fa=nd[x].fa,gfa=nd[fa].fa;
ll dir=nd[fa].ch[1]==x,son=nd[x].ch[!dir];
if(nroot(fa))
{
nd[gfa].ch[nd[gfa].ch[1]==fa]=x;
}
nd[x].ch[!dir]=fa,nd[fa].ch[dir]=son;
if(son)
{
nd[son].fa=fa;
}
nd[fa].fa=x,nd[x].fa=gfa,update(fa);
}
inline void splay(ll x)
{
ll fa=x,gfa,cur=0;
st[++cur]=fa;
while(nroot(fa))
{
st[++cur]=fa=nd[fa].fa;
}
while(cur)
{
spread(st[cur--]);
}
while(nroot(x))
{
fa=nd[x].fa,gfa=nd[fa].fa;
if(nroot(fa))
{
rotate((nd[fa].ch[0]==x)^(nd[gfa].ch[0]==fa)?x:fa);
}
rotate(x);
}
update(x);
}
inline void access(ll x)
{
for(register int i=0;x;x=nd[i=x].fa)
{
splay(x),rs=i,update(x);
}
}
inline void makeRoot(ll x)
{
access(x),splay(x),reverse(x);
}
inline ll findRoot(ll x)
{
access(x),splay(x);
while(ls)
{
spread(x),x=ls;
}
return x;
}
inline void split(ll x,ll y)
{
makeRoot(x),access(y),splay(y);
}
inline void link(ll x,ll y)
{
makeRoot(x);
if(findRoot(y)!=x)
{
nd[x].fa=y;
}
}
inline void cut(ll x,ll y)
{
makeRoot(x);
if(findRoot(y)==x&&nd[x].fa==y&&!rs)
{
nd[x].fa=nd[y].ch[0]=0,update(y);
}
}
#undef ls
#undef rs
};
}
LCT::LinkCutTree lct[10];
inline void addEdge(ll from,ll to,ll col)
{
ed[++tot].prev=last[from];
ed[tot].to=to;
ed[tot].col=col;
last[from]=tot;
}
inline bool check(ll u,ll v,ll w)
{
ll col=-1;
for(register int i=last[u];i;i=ed[i].prev)
{
if(ed[i].to==v)
{
col=ed[i].col;
break;
}
}
if(col==-1)
{
return puts("No such edge."),0;
}
if(w==col)
{
return puts("Success."),1;
}
if(deg[u][w]==2||deg[v][w]==2)
{
return puts("Error 1."),0;
}
if(lct[w].findRoot(u)==lct[w].findRoot(v))
{
return puts("Error 2."),0;
}
return puts("Success."),1;
}
int main()
{
n=read(),m=read(),c=read(),qcnt=read();
for(register int i=1;i<=n;i++)
{
v=read();
for(register int j=0;j<c;j++)
{
lct[j].nd[i].val=v;
}
}
for(register int i=0;i<m;i++)
{
u=read(),v=read(),w=read(),lct[w].link(u,v);
deg[u][w]++,deg[v][w]++,addEdge(u,v,w),addEdge(v,u,w);
}
for(register int i=0;i<qcnt;i++)
{
op=read(),u=read(),v=read();
if(op==0)
{
for(register int j=0;j<c;j++)
{
lct[j].splay(u),lct[j].nd[u].val=v;
}
}
if(op==1)
{
if(check(u,v,w=read()))
{
for(register int j=last[u];j;j=ed[j].prev)
{
if(ed[j].to==v)
{
col=ed[j].col,ed[j].col=w;
break;
}
}
for(register int j=last[v];j;j=ed[j].prev)
{
if(ed[j].to==u)
{
ed[j].col=w;
break;
}
}
lct[col].cut(u,v),lct[w].link(u,v);
deg[u][col]--,deg[v][col]--,deg[u][w]++,deg[v][w]++;
}
}
if(op==2)
{
w=read(),swap(u,w);
if(lct[w].findRoot(u)!=lct[w].findRoot(v))
{
puts("-1");
continue;
}
lct[w].split(u,v),printf("%d\n",lct[w].nd[v].mx);
}
}
}

Luogu P2173 [ZJOI2012]网络的更多相关文章

  1. 洛谷 P2173 [ZJOI2012]网络 解题报告

    P2173 [ZJOI2012]网络 题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同色的环, ...

  2. Luogu 2173 [ZJOI2012]网络 - LCT

    Solution $LCT$ 直接上$QuQ$ 注意$cut$ 完 需要 $d[u + c * N]--$ 再  $link$,  不然会输出Error 1的哦 Code #include<cs ...

  3. 洛谷P2173 [ZJOI2012]网络(10棵lct与瞎jb暴力)

    有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同色的环,同色的环指相同颜色的边构成的环. 在这个图上,你 ...

  4. P2173 [ZJOI2012]网络

    \(\color{#0066ff}{ 题目描述 }\) 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同 ...

  5. [Luogu 2604] ZJOI2010 网络扩容

    [Luogu 2604] ZJOI2010 网络扩容 第一问直接最大流. 第二问,添加一遍带费用的边,边权 INF,超级源点连源点一条容量为 \(k\) 的边来限流,跑费用流. 大约是第一次用 nam ...

  6. BZOJ2816:[ZJOI2012]网络——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2816 https://www.luogu.org/problemnew/show/P2173 有一 ...

  7. BZOJ 1834 Luogu P2604 [ZJOI2010]网络扩容 (最小费用最大流)

    题目连接: (luogu) https://www.luogu.org/problemnew/show/P2604 (bzoj) https://www.lydsy.com/JudgeOnline/p ...

  8. 【Luogu P3376】网络最大流

    Luogu P3376 最大流是网络流模型的一个基础问题. 网络流模型就是一种特殊的有向图. 概念: 源点:提供流的节点(入度为0),类比成为一个无限放水的水厂 汇点:接受流的节点(出度为0),类比成 ...

  9. bzoj 2816: [ZJOI2012]网络 (LCT 建多棵树)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2816 题面: http://www.lydsy.com/JudgeOnline/upload ...

随机推荐

  1. 初学源码之——银行案例手写IOC和AOP

    手写实现lOC和AOP 上一部分我们理解了loC和AOP思想,我们先不考虑Spring是如何实现这两个思想的,此处准备了一个『银行转账」的案例,请分析该案例在代码层次有什么问题?分析之后使用我们已有知 ...

  2. Kubernetes Pod水平自动伸缩(HPA)

    HPA简介 HAP,全称 Horizontal Pod Autoscaler, 可以基于 CPU 利用率自动扩缩 ReplicationController.Deployment 和 ReplicaS ...

  3. JQuery实现tab页

    用ul 和 div 配合实现tab 页 1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset="U ...

  4. .Net Core 2.2 存取Cookie

    第一步(注释代码):注释Startup.cs中 ConfigureServices 函数中的  options.CheckConsentNeeded = context => true; 第二步 ...

  5. 如何安装eclipse

    1.打开浏览器输入网址:http://www.eclipse.org 进入官方 2.(目前我使用windows操作系统),下拉界面选择"windows"后的"64-bit ...

  6. 单例模式,reorder详解,线程安全,双检查锁

    单例模式,分为饿汉式单例 和 懒汉式单例. 先把本类对象所需内存在main函数执行前就new出来,这是饿汉式单例. 个人思考: 为什么饿汉式不独霸天下,还有什么必要去研究使用cpp11上支持的双检查锁 ...

  7. 2020.09.05【NOIP提高组&普及组】模拟赛C组1总结

    T1:机器翻译 这一道题是一个很简单的队列题目,我们只要每次维护队列元素数量保持在m以内即可 T2:乌龟棋 这一道题我一开始比赛是暴力枚举(万事先暴力),很明显这个肯定会超时(30分)那么考虑动态规划 ...

  8. fio硬盘测速windows+linux

    一.FIO工具简介 Fio工具的介绍网上有很多,都是可以通用的,这里就不做太多个人描述了,直接借鉴一下 fio是一种I / O工具,用于基准测试和压力/硬件验证.它支持19种不同类型的I / O引擎( ...

  9. 一些IT service的相关知识

    1. cmd是什么,怎么在电脑上打开cmd命令框. 在windows环境下,命令行程序为cmd.exe,是一个32位的命令行程序,微软Windows系统基于Windows上的命令解释程序,类似于微软的 ...

  10. Python操作图像

    安装Pillow pip install Pillow 打开图像 from PIL import Image img = Image.open("./lena.tiff") 保存图 ...