题意

写的比较清楚,我就不解释了。

\(\texttt{Data Range:}n\leq 10^4,m\leq 10^5,c\leq 10,k\leq 10^5\)

题解

注意到 \(c\) 的范围很小,而且把每种颜色的边抠出来发现是一个森林(准确的来说是每个连通块都是链),于是我们可以对每种颜色都开个 \(\texttt{LCT}\)。

然后这题就基本上是板子题了,但是这题细节很多,可能会花费你很多的调试时间。

有一个坑点就是当修改 \((u,v)\) 这条边的颜色的时候如果新的颜色等于原来的颜色无论怎样都是成功的,因为保证每一次操作后的图是满足性质的。

代码

#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=2e5+51;
struct Edge{
ll to,prev,col;
};
Edge ed[MAXN<<1];
ll n,m,c,qcnt,tot,u,v,w,op,col;
ll deg[MAXN][10],last[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
namespace LCT{
struct Node{
ll fa,mx,val,rv,sz;
ll ch[2];
};
struct LinkCutTree{
Node nd[MAXN];
ll st[MAXN];
#define ls nd[x].ch[0]
#define rs nd[x].ch[1]
inline bool nroot(ll x)
{
return nd[nd[x].fa].ch[0]==x||nd[nd[x].fa].ch[1]==x;
}
inline void update(ll x)
{
nd[x].mx=max(max(nd[x].val,nd[ls].mx),nd[rs].mx);
}
inline void reverse(ll x)
{
swap(ls,rs),nd[x].rv^=1;
}
inline void spread(ll x)
{
if(nd[x].rv)
{
ls?reverse(ls):(void)(1),rs?reverse(rs):(void)(1);
nd[x].rv=0;
}
}
inline void rotate(ll x)
{
ll fa=nd[x].fa,gfa=nd[fa].fa;
ll dir=nd[fa].ch[1]==x,son=nd[x].ch[!dir];
if(nroot(fa))
{
nd[gfa].ch[nd[gfa].ch[1]==fa]=x;
}
nd[x].ch[!dir]=fa,nd[fa].ch[dir]=son;
if(son)
{
nd[son].fa=fa;
}
nd[fa].fa=x,nd[x].fa=gfa,update(fa);
}
inline void splay(ll x)
{
ll fa=x,gfa,cur=0;
st[++cur]=fa;
while(nroot(fa))
{
st[++cur]=fa=nd[fa].fa;
}
while(cur)
{
spread(st[cur--]);
}
while(nroot(x))
{
fa=nd[x].fa,gfa=nd[fa].fa;
if(nroot(fa))
{
rotate((nd[fa].ch[0]==x)^(nd[gfa].ch[0]==fa)?x:fa);
}
rotate(x);
}
update(x);
}
inline void access(ll x)
{
for(register int i=0;x;x=nd[i=x].fa)
{
splay(x),rs=i,update(x);
}
}
inline void makeRoot(ll x)
{
access(x),splay(x),reverse(x);
}
inline ll findRoot(ll x)
{
access(x),splay(x);
while(ls)
{
spread(x),x=ls;
}
return x;
}
inline void split(ll x,ll y)
{
makeRoot(x),access(y),splay(y);
}
inline void link(ll x,ll y)
{
makeRoot(x);
if(findRoot(y)!=x)
{
nd[x].fa=y;
}
}
inline void cut(ll x,ll y)
{
makeRoot(x);
if(findRoot(y)==x&&nd[x].fa==y&&!rs)
{
nd[x].fa=nd[y].ch[0]=0,update(y);
}
}
#undef ls
#undef rs
};
}
LCT::LinkCutTree lct[10];
inline void addEdge(ll from,ll to,ll col)
{
ed[++tot].prev=last[from];
ed[tot].to=to;
ed[tot].col=col;
last[from]=tot;
}
inline bool check(ll u,ll v,ll w)
{
ll col=-1;
for(register int i=last[u];i;i=ed[i].prev)
{
if(ed[i].to==v)
{
col=ed[i].col;
break;
}
}
if(col==-1)
{
return puts("No such edge."),0;
}
if(w==col)
{
return puts("Success."),1;
}
if(deg[u][w]==2||deg[v][w]==2)
{
return puts("Error 1."),0;
}
if(lct[w].findRoot(u)==lct[w].findRoot(v))
{
return puts("Error 2."),0;
}
return puts("Success."),1;
}
int main()
{
n=read(),m=read(),c=read(),qcnt=read();
for(register int i=1;i<=n;i++)
{
v=read();
for(register int j=0;j<c;j++)
{
lct[j].nd[i].val=v;
}
}
for(register int i=0;i<m;i++)
{
u=read(),v=read(),w=read(),lct[w].link(u,v);
deg[u][w]++,deg[v][w]++,addEdge(u,v,w),addEdge(v,u,w);
}
for(register int i=0;i<qcnt;i++)
{
op=read(),u=read(),v=read();
if(op==0)
{
for(register int j=0;j<c;j++)
{
lct[j].splay(u),lct[j].nd[u].val=v;
}
}
if(op==1)
{
if(check(u,v,w=read()))
{
for(register int j=last[u];j;j=ed[j].prev)
{
if(ed[j].to==v)
{
col=ed[j].col,ed[j].col=w;
break;
}
}
for(register int j=last[v];j;j=ed[j].prev)
{
if(ed[j].to==u)
{
ed[j].col=w;
break;
}
}
lct[col].cut(u,v),lct[w].link(u,v);
deg[u][col]--,deg[v][col]--,deg[u][w]++,deg[v][w]++;
}
}
if(op==2)
{
w=read(),swap(u,w);
if(lct[w].findRoot(u)!=lct[w].findRoot(v))
{
puts("-1");
continue;
}
lct[w].split(u,v),printf("%d\n",lct[w].nd[v].mx);
}
}
}

Luogu P2173 [ZJOI2012]网络的更多相关文章

  1. 洛谷 P2173 [ZJOI2012]网络 解题报告

    P2173 [ZJOI2012]网络 题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同色的环, ...

  2. Luogu 2173 [ZJOI2012]网络 - LCT

    Solution $LCT$ 直接上$QuQ$ 注意$cut$ 完 需要 $d[u + c * N]--$ 再  $link$,  不然会输出Error 1的哦 Code #include<cs ...

  3. 洛谷P2173 [ZJOI2012]网络(10棵lct与瞎jb暴力)

    有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同色的环,同色的环指相同颜色的边构成的环. 在这个图上,你 ...

  4. P2173 [ZJOI2012]网络

    \(\color{#0066ff}{ 题目描述 }\) 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同 ...

  5. [Luogu 2604] ZJOI2010 网络扩容

    [Luogu 2604] ZJOI2010 网络扩容 第一问直接最大流. 第二问,添加一遍带费用的边,边权 INF,超级源点连源点一条容量为 \(k\) 的边来限流,跑费用流. 大约是第一次用 nam ...

  6. BZOJ2816:[ZJOI2012]网络——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2816 https://www.luogu.org/problemnew/show/P2173 有一 ...

  7. BZOJ 1834 Luogu P2604 [ZJOI2010]网络扩容 (最小费用最大流)

    题目连接: (luogu) https://www.luogu.org/problemnew/show/P2604 (bzoj) https://www.lydsy.com/JudgeOnline/p ...

  8. 【Luogu P3376】网络最大流

    Luogu P3376 最大流是网络流模型的一个基础问题. 网络流模型就是一种特殊的有向图. 概念: 源点:提供流的节点(入度为0),类比成为一个无限放水的水厂 汇点:接受流的节点(出度为0),类比成 ...

  9. bzoj 2816: [ZJOI2012]网络 (LCT 建多棵树)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2816 题面: http://www.lydsy.com/JudgeOnline/upload ...

随机推荐

  1. JS中的DOM对象

    DOM对象 1. DOM树 当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model),通过 HTML DOM对象,可访问 JavaScript HTML 文档的所有 ...

  2. spring-boot-route(五)整合Swagger生成接口文档

    目前,大多数公司都采用了前后端分离的开发模式,为了解决前后端人员的沟通问题,后端人员在开发接口的时候会选择使用swagger2来生成对应的接口文档,swagger2提供了强大的页面调试功能,这样可以有 ...

  3. PADS Layout VX.2.3 修改层名

    操作系统:Windows 10 x64 工具1:PADS Layout VX.2.3 点击菜单Setup > Layer Definition... 在Layers Setup窗口中,选择相应的 ...

  4. Iptables 下 SNAT、DNAT和MASQUERADE三者之间的区别

    Iptables 中可以灵活的做各种网络地址转换(NAT,Network Address Translation) 网络地址转换(NAT)主要有两种:SNAT 和 DNAT,但是也有一种特例 MASQ ...

  5. 笔记本电脑为什么有时候不用按FN+F1~12也可以控制音量、亮度全部等等

    对于经常要使用F1~F12的用户就很烦,比如编写前端代码的时候想直接按F12检查代码就是不行. 如何取消快捷键? 问题原因: 1.电脑默认使用了快捷键. 2.电脑按了FN+ESC锁定,只限于戴尔的电脑 ...

  6. cmd备份数据库,还原数据库,仅限于php

    第一:先备份数据库 1.进入cmd(黑盒子) 2.进入phpstudy所在的盘 3.cd E: 3.cd phpstudy; 4.cd PHPTutorial 5.cd mysql; 6.cd bin ...

  7. android的adb命令整理

    adb.exe的路径在Android\Sdk\platform-tools 把这个路径加入到系统的path环境下. 先用usb连接设备,比如一台android手机 adb tcpip 5555 adb ...

  8. Linux就该这么学28期——Day05 vim编辑器与Shell命令脚本 (yum配置 网卡配置)

    vim 三种模式: 命令模式 按行操作 dd 剪切.删除 5dd dG   全删 yy 复制光标所在行 p 粘贴 u 撤销操作 / 搜索 /ab n  下一个 N   上一个 输入模式 a 当前光标处 ...

  9. 多测师讲解自动化测试 _RF分配id_高级讲师肖sir

    1.Assign Id To Element.

  10. 网页添加 Live2D 看板娘

        我是先参考别人的[点击跳转]博客来做的.不过我发现网上很多人都没有把一些细节写出来,用了别人那里下载的文件后里面的一些跳转链接就跳到他们的页面了.所以我这里写一写如何修改这些跳转链接吧. 1. ...