题解 SP3734 【PERIODNI - Periodni】
考虑用\(DP\)和组合数学来解决。
因为原图像不规则的形状不好处理,所以先用笛卡尔树(性质为小根堆)将其划分成一个一个的矩形。

发现在笛卡尔树上的每个节点都对应一个矩形,矩形高为\(h_x-h_{fa_x}\),宽为\(size_x\)。
结合笛卡尔树的性质,不难得到,红色矩形所对应的节点的两个儿子为绿色矩形和蓝色矩形。

设\(f_{x,i}\)为在节点\(x\)所对应的矩形及其以上的图形中放\(i\)个点的方案数,那么答案为\(f_{root,k}\)
与子树合并时只需枚举在子树图像中放的点个数,再用乘法原理乘起来。
再考虑其本身的矩形。
若是在一个\(n \times m\)的矩形中放\(k\)个点,其方案数为\(C_{n}^kC_{m}^kk!\),因为你需要从\(n\)行中选\(k\)行,从\(m\)列中选\(k\)列,同时这些选择的顺序可以改变,所以再乘上\(k!\)。
那么再考虑本身的矩形时,枚举在自身的矩形中放的点个数,再乘上\(C_{n}^kC_{m}^kk!\)即可
实现细节就看代码吧。
\(code:\)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxn 5010
#define mod 1000000007
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,k,top,root;
ll ls[maxn],rs[maxn],st[maxn];
ll f[maxn][maxn],h[maxn],siz[maxn],fac[1000050],inv[1000050];
ll qp(ll x,ll y)
{
ll ans=1;
while(y)
{
if(y&1) ans=(ans*x)%mod;
x=(x*x)%mod;
y>>=1;
}
return ans%mod;
}
void init()
{
fac[0]=fac[1]=inv[0]=inv[1]=1;
fac[2]=2,inv[2]=qp(2,mod-2);
for(int i=3;i<=1000000;++i)
{
fac[i]=(fac[i-1]*i)%mod;
inv[i]=qp(fac[i],mod-2);
}
}
ll C(ll n,ll m)
{
if(n<m) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int build()
{
for(int i=1;i<=n;++i)
{
while(top&&h[st[top]]>h[i]) ls[i]=st[top--];
if(top) rs[st[top]]=i;
st[++top]=i;
}
return st[1];
}
void dfs(int x,int val)
{
f[x][0]=siz[x]=1;
ll high=h[x]-val;
if(ls[x])
{
ll y=ls[x];
dfs(y,h[x]),siz[x]+=siz[y];
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(siz[y],i);++j)
f[x][i]=(f[x][i]+f[y][j]*f[x][i-j]%mod)%mod;
}
if(rs[x])
{
ll y=rs[x];
dfs(y,h[x]),siz[x]+=siz[y];
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(siz[y],i);++j)
f[x][i]=(f[x][i]+f[y][j]*f[x][i-j]%mod)%mod;
}
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(high,i);++j)
f[x][i]=(f[x][i]+f[x][i-j]*fac[j]%mod*C(high,j)%mod*C(siz[x]-(i-j),j)%mod)%mod;
}
int main()
{
init();
read(n),read(k);
for(int i=1;i<=n;++i) read(h[i]);
root=build();
dfs(root,0);
printf("%lld",f[root][k]);
return 0;
}
题解 SP3734 【PERIODNI - Periodni】的更多相关文章
- SP3734 PERIODNI - Periodni
题解: 第一道笛卡尔树dp 会发现以一个点为分界 如果左边大于它右边大于它 那么大于的那部分是相互不影响的 于是我们对序列建立笛卡尔树 满足父亲节点的v<儿子节点的v 然后这棵树的中序遍历为原序 ...
- 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...
- [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元
2616: SPOJ PERIODNI Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 128 Solved: 48[Submit][Status][ ...
- spoj periodni
题解: dp 方程弄出来就好做了 代码: #include<bits/stdc++.h> ,M=; typedef int arr[N]; typedef long long ll; in ...
- bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)
题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高 ...
- BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...
- BZOJ2616 : SPOJ PERIODNI
长为$A$,宽为$B$的矩阵放$K$个车的方案数$=C(A,K)\times C(B,K)\times K!$. 建立笛卡尔树,那么左右儿子独立,设$f[i][j]$表示$i$子树内放$j$个车的方案 ...
随机推荐
- JavaScript this 关键词
this是什么呢? JavaScript this 关键词指的是它所属的对象. 它拥有不同的值,具体取决于它所使用的位置: 在方法中,this 指的是所有者对象. 单独的情况下,this 指的是全局对 ...
- 云服务器终端命令显示-bash-4.2#怎么解决
原因:删除了root/.bashrc 和 root/.bash_profile两个文件的丢失 解决办法: -bash-4.2# cp /etc/skel/.bashrc /root/ -bash-4. ...
- 入门大数据---SparkSQL_Dataset和DataFrame简介
一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 Da ...
- python利用列表文件遍历
关键词:文件遍历/列表 思路:先制作目标文件列表(txt/csv...均可),再逐行读取列表文件 1. 制作列表 linux 终端输入:# find ./abc -type f > list.t ...
- JavaScript基础初始时期分支(018)
Init-Time Branching初始时期分支是一种用做优化的模式.如果某些条件在程序启动后就不再改变,那么我们就只需要在初始时期检查一次就可以了,而不是在每次 需要用到这些条件的时候都检查一次. ...
- Python之浅谈绑定方法
目录 绑定方法和非绑定方法 绑定方法 对象的绑定方法 类的绑定方法 非绑定方法 总结 绑定方法和非绑定方法 类中定义的方法大致可以分为两类:绑定方法和非绑定方法.其中绑定方法又可以分为绑定到对象的方法 ...
- 记一次服务器被植入挖矿木马cpu飙升200%解决过程
线上服务器用的是某讯云的,欢快的完美运行着Tomcat,MySQL,MongoDB,ActiveMQ等程序.突然一则噩耗从前线传来:网站不能访问了. 此项目是我负责,我以150+的手速立即打开了服务器 ...
- 飞越面试官(三)--JVM
大家好!我是本公众号唯一官方指定没头屑的小便--怕屁林. JVM,全称Java Virtual Machine,作为执行Java程序的容器,几乎代理了Java内存与服务器内存的交互,可以说是程序拥 ...
- C语言资料分享
链接:https://pan.baidu.com/s/1hoc0sA0bDAq9XGC0pi2Kcg 提取码:60pn 复制这段内容后打开百度网盘手机App,操作更方便哦 c primer plus下 ...
- windows php5.5安装redis扩展,并用redis存储session
1.确定安装版本 先通过phpinfo()查看php的Compiler.Architecture.Thread Safety,其中Thread Safety如果是enabled,那么就是线程安全(ts ...