题解 SP3734 【PERIODNI - Periodni】
考虑用\(DP\)和组合数学来解决。
因为原图像不规则的形状不好处理,所以先用笛卡尔树(性质为小根堆)将其划分成一个一个的矩形。

发现在笛卡尔树上的每个节点都对应一个矩形,矩形高为\(h_x-h_{fa_x}\),宽为\(size_x\)。
结合笛卡尔树的性质,不难得到,红色矩形所对应的节点的两个儿子为绿色矩形和蓝色矩形。

设\(f_{x,i}\)为在节点\(x\)所对应的矩形及其以上的图形中放\(i\)个点的方案数,那么答案为\(f_{root,k}\)
与子树合并时只需枚举在子树图像中放的点个数,再用乘法原理乘起来。
再考虑其本身的矩形。
若是在一个\(n \times m\)的矩形中放\(k\)个点,其方案数为\(C_{n}^kC_{m}^kk!\),因为你需要从\(n\)行中选\(k\)行,从\(m\)列中选\(k\)列,同时这些选择的顺序可以改变,所以再乘上\(k!\)。
那么再考虑本身的矩形时,枚举在自身的矩形中放的点个数,再乘上\(C_{n}^kC_{m}^kk!\)即可
实现细节就看代码吧。
\(code:\)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxn 5010
#define mod 1000000007
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,k,top,root;
ll ls[maxn],rs[maxn],st[maxn];
ll f[maxn][maxn],h[maxn],siz[maxn],fac[1000050],inv[1000050];
ll qp(ll x,ll y)
{
ll ans=1;
while(y)
{
if(y&1) ans=(ans*x)%mod;
x=(x*x)%mod;
y>>=1;
}
return ans%mod;
}
void init()
{
fac[0]=fac[1]=inv[0]=inv[1]=1;
fac[2]=2,inv[2]=qp(2,mod-2);
for(int i=3;i<=1000000;++i)
{
fac[i]=(fac[i-1]*i)%mod;
inv[i]=qp(fac[i],mod-2);
}
}
ll C(ll n,ll m)
{
if(n<m) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int build()
{
for(int i=1;i<=n;++i)
{
while(top&&h[st[top]]>h[i]) ls[i]=st[top--];
if(top) rs[st[top]]=i;
st[++top]=i;
}
return st[1];
}
void dfs(int x,int val)
{
f[x][0]=siz[x]=1;
ll high=h[x]-val;
if(ls[x])
{
ll y=ls[x];
dfs(y,h[x]),siz[x]+=siz[y];
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(siz[y],i);++j)
f[x][i]=(f[x][i]+f[y][j]*f[x][i-j]%mod)%mod;
}
if(rs[x])
{
ll y=rs[x];
dfs(y,h[x]),siz[x]+=siz[y];
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(siz[y],i);++j)
f[x][i]=(f[x][i]+f[y][j]*f[x][i-j]%mod)%mod;
}
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(high,i);++j)
f[x][i]=(f[x][i]+f[x][i-j]*fac[j]%mod*C(high,j)%mod*C(siz[x]-(i-j),j)%mod)%mod;
}
int main()
{
init();
read(n),read(k);
for(int i=1;i<=n;++i) read(h[i]);
root=build();
dfs(root,0);
printf("%lld",f[root][k]);
return 0;
}
题解 SP3734 【PERIODNI - Periodni】的更多相关文章
- SP3734 PERIODNI - Periodni
题解: 第一道笛卡尔树dp 会发现以一个点为分界 如果左边大于它右边大于它 那么大于的那部分是相互不影响的 于是我们对序列建立笛卡尔树 满足父亲节点的v<儿子节点的v 然后这棵树的中序遍历为原序 ...
- 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...
- [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元
2616: SPOJ PERIODNI Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 128 Solved: 48[Submit][Status][ ...
- spoj periodni
题解: dp 方程弄出来就好做了 代码: #include<bits/stdc++.h> ,M=; typedef int arr[N]; typedef long long ll; in ...
- bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)
题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高 ...
- BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...
- BZOJ2616 : SPOJ PERIODNI
长为$A$,宽为$B$的矩阵放$K$个车的方案数$=C(A,K)\times C(B,K)\times K!$. 建立笛卡尔树,那么左右儿子独立,设$f[i][j]$表示$i$子树内放$j$个车的方案 ...
随机推荐
- 底层剖析Python深浅拷贝
底层剖析Python深浅拷贝 拷贝的用途 拷贝就是copy,目的在于复制出一份一模一样的数据.使用相同的算法对于产生的数据有多种截然不同的用途时就可以使用copy技术,将copy出的各种副本去做各种不 ...
- Python方法函数记录
目录 python 控制台输出的内容保存到txt 文件 eval函数使用 python 控制台输出的内容保存到txt 文件 import sys class Logger(object): def _ ...
- Java笔试面试总结—try、catch、finally语句中有return 的各类情况
前言 之前在刷笔试题和面试的时候经常会遇到或者被问到 try-catch-finally 语法块的执行顺序等问题,今天就抽空整理了一下这个知识点,然后记录下来. 正文 本篇文章主要是通过举例的方式来阐 ...
- 关于 urlencode 的使用和 json 模块的介绍
先附上一段 “百度翻译” 的爬虫代码 # python爬虫实现百度翻译 # urllib和request POST参数提交 from urllib import request,parse impor ...
- 14 张思维导图构建 Python 核心知识体系
ZOE是一名医学生,在自己博客分享了很多高质量的思维导图.本文中所列的 14 张思维导图(高清图见文末),是 17 年作者开始学习 Python 时所记录的,希望对大家有所帮助.原文:https:// ...
- 请写出在ASP.NET中常用的几种页面间传值的方法,并说出它们的特点。
QueryString 传递一个或多个安全性要求不高或是结构简单的数值.但是对于传递数组或对象的话,就不能用这个方法了 session(viewstate) 简单,但易丢失 作用于用户个人,过量的存储 ...
- 收藏python开发各种资源官方文档
http://json.cn/ https://cn.bing.com/ https://processon.com/ https://docs.djangoproject.com/en/1.11/r ...
- 07 . Kubernetes之Service
kubernetes有三种网络 1. Node Network 2. Pod Network 3. Cluster Network Service-网络代理模式 **userspce: 1.1- ** ...
- C#获取页面内容的几种方式
常见的Web页面获取页面内容用 WebRequest 或者 HttpWebRequest 来操作 Http 请求. 例如,获取百度网站的 html 页面 var request = WebReques ...
- nginx配置使用, 入门到实践
1. 本文做自己学习配置使用, 转自: https://mp.weixin.qq.com/s?__biz=Mzg2MjEwMjI1Mg%3D%3D&chksm=ce0dae4df97a275b ...