【SP2916】Can you answer these queries V - 线段树
题面
You are given a sequence \(a_1,a_2,...,a_n\). (\(|A[i]| \leq 10000 , 1 \leq N \leq 10000\)). A query is defined as follows: Query(x1,y1,x2,y2) = \(Max{a_i+a_{i+1}+...+a_j;x_1 \leq i \leq y_1 , x_2 \leq j \leq y_2}\) and \(x_1 \leq x_2 , y_1 \leq y_2\). Given \(m\) queries (\(1 \leq M \leq 10000\)), your program must output the results of these queries.
题意
求所有左右端点分别在区间 \([x_1,y_1]\) 与 \([x_2,y_2]\) 的区间的最大连续子段和的最大值
思路
1° 两个区间不相交

答案显然是左边区间的 rmax+中间不重叠部分的 sum+右边区间的 lmax,即:\([x_1,y_1].rmax+[y_1,x_2].sum+[x_2,y_2].lmax\)
2° 两个区间相交

答案就会有三种情况
·① 答案区间为区间相交部分,即:\([x_2,y_1].max\)
·② 答案区间的左端点在相交部分左部,取相交部分左边的 rmax 和剩下区间的 lmax,再减掉加了两次的左边相交节点
即:\([x_1,x_2].rmax+[x_2,y_2].lmax-a_{x_2}\)
·③ 答案区间的右端点在相交部分右部,取相交部分右边的 lmax 和剩下区间的 rmax,再减掉加了两次的右边相交节点
即:\([y_1,y_2].lmax+[x_1,y_1].rmax-a_{y_1}\)
代码
/************************************************
*Author : lrj124
*Created Time : 2019.09.27.21:55
*Mail : 1584634848@qq.com
*Problem : spoj2916
************************************************/
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 10000 + 10;
struct seg { int l,r,sum,max; } tree[maxn<<2];
int T,n,q,a[maxn];
inline void pushup(int root) {
tree[root].sum = tree[root<<1].sum+tree[root<<1|1].sum;
tree[root].l = max(tree[root<<1].l,tree[root<<1|1].l+tree[root<<1].sum);
tree[root].r = max(tree[root<<1|1].r,tree[root<<1].r+tree[root<<1|1].sum);
tree[root].max = max(tree[root<<1].r+tree[root<<1|1].l,max(tree[root<<1].max,tree[root<<1|1].max));
}
inline void build(int l,int r,int root) {
if (l == r) {
tree[root] = { a[l],a[l],a[l],a[l] };
return;
}
int mid = l+r>>1;
build(l,mid,root<<1);
build(mid+1,r,root<<1|1);
pushup(root);
}
inline seg query(int l,int r,int ql,int qr,int root) {
if (ql > qr) return {0,0,0,0};
if (ql <= l && r <= qr) return tree[root];
int mid = l+r>>1;
if (mid >= qr) return query(l,mid,ql,qr,root<<1);
if (ql > mid) return query(mid+1,r,ql,qr,root<<1|1);
seg lson = query(l,mid,ql,qr,root<<1),rson = query(mid+1,r,ql,qr,root<<1|1),ans;
ans = { max(lson.l,rson.l+lson.sum),max(rson.r,lson.r+rson.sum),rson.sum+lson.sum,max(lson.r+rson.l,max(lson.max,rson.max)) };
return ans;
}
inline int solve(int l1,int r1,int l2,int r2) {
if (r1 < l2) return query(1,n,l1,r1,1).r+query(1,n,r1+1,l2-1,1).sum+query(1,n,l2,r2,1).l;
int ans = query(1,n,l2,r1,1).max;
if (l1 < l2) ans = max(ans,query(1,n,l1,l2,1).r+query(1,n,l2,r2,1).l-a[l2]);
if (r2 > r1) ans = max(ans,query(1,n,l1,r1,1).r+query(1,n,r1,r2,1).l-a[r1]);
return ans;
}
int main() {
for (scanf("%d",&T);T--;) {
memset(tree,0,sizeof(tree));
scanf("%d",&n);
for (int i = 1;i <= n;i++) scanf("%d",&a[i]);
build(1,n,1);
for (scanf("%d",&q);q--;) {
int l1,r1,l2,r2; scanf("%d%d%d%d",&l1,&r1,&l2,&r2);
printf("%d\n",solve(l1,r1,l2,r2));
}
}
return 0;
}
【SP2916】Can you answer these queries V - 线段树的更多相关文章
- GSS5 spoj 2916. Can you answer these queries V 线段树
gss5 Can you answer these queries V 给出数列a1...an,询问时给出: Query(x1,y1,x2,y2) = Max { A[i]+A[i+1]+...+A[ ...
- SPOJ 2916 Can you answer these queries V(线段树-分类讨论)
题目链接:http://www.spoj.com/problems/GSS5/ 题意:给出一个数列.每次查询最大子段和Sum[i,j],其中i和j满足x1<=i<=y1,x2<=j& ...
- SPOJ GSS5 Can you answer these queries V ——线段树
[题目分析] GSS1上增加区间左右端点的限制. 直接分类讨论就好了. [代码] #include <cstdio> #include <cstring> #include & ...
- SPOJ GSS1_Can you answer these queries I(线段树区间合并)
SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...
- SPOJ 1557. Can you answer these queries II 线段树
Can you answer these queries II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://www.spoj.com/pr ...
- bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树
2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 145 ...
- 【BZOJ2482】[Spoj1557] Can you answer these queries II 线段树
[BZOJ2482][Spoj1557] Can you answer these queries II Description 给定n个元素的序列. 给出m个询问:求l[i]~r[i]的最大子段和( ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
- GSS4 2713. Can you answer these queries IV 线段树
GSS7 Can you answer these queries IV 题目:给出一个数列,原数列和值不超过1e18,有两种操作: 0 x y:修改区间[x,y]所有数开方后向下调整至最近的整数 1 ...
随机推荐
- Web优化躬行记(1)——CSS
Web优化的对象包括页面性能.用户体验.开发效率.代码优化.网络延迟等,本系列会列举出众多常用的优化技巧,每个技巧都可深入分析,在此只做抛砖引玉. 本系列优化内容提炼于<前端面试宝典>.& ...
- 软件测试必备技能,带你学习jmeter!
一:jmeter用户变量设置: 1.在线程组鼠标右击--添加--配置元件-用户定义的变量, 2.根据业务需求自定义变量的名称,添加需要的变量和对应的值 3.在脚本对应位置添加参数 二:文件参数化: 两 ...
- python下载及安装方法
打开 http://www.python.org 找到Downlodas 点击windows 下载安装
- BUUCTF-Web Comment
dirsearch扫出/.git/目录 遂用航神写的Githacker脚本 https://github.com/wangyihang/githacker 出来的源码并不完整,使用git log ...
- PHP操作Redis步骤详解
一.Redis连接与认证 $redis = new Redis(); //连接参数:ip.端口.连接超时时间,连接成功返回true,否则返回false $ret = $redis->connec ...
- dp最长不下降序列
// // Created by snnnow on 2020/4/13. // //这是dp 问题的基础题 // //最长不下降 //(导弹拦截是其例题) //那这篇文章是讲啥呢, // 主要是吧, ...
- 第十二章 类加载器&反射
12.1.类加载器 12.1.1.类加载 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过类的加载.类的连接.类的初始化这三个步骤来对类进行初始化.如果不出现意外情况,JVM将会连续完成 ...
- Arduino+温度、湿度传感器
Arduino语言注解Arduino语言是建立在C/C++基础上的,其实也就是基础的C语言,Arduino语言只不过把AVR单片机(微控制器)相关的一些参数设置都函数化,不用我们去了解他的底层,让我们 ...
- Python创建字符串
Python创建字符串: 一般情况下可以使用 ' 或 " 创建字符串 或 使用引用字符串变量 或 字符串表达式. # 字符串的创建 # 使用 ' 或 “ 进行创建 strs = 'ABCDE ...
- hashlib加密算法
# import hashlib # mima = hashlib.md5()#创建hash对象,md5是信息摘要算法,生成128位密文 # print(mima) # # mima.update(' ...