hive.optimize.cp=true:列裁剪
hive.optimize.prunner:分区裁剪
hive.limit.optimize.enable=true:优化LIMIT n语句
hive.limit.row.max.size=1000000:
hive.limit.optimize.limit.file=10:最大文件数

1. 本地模式(小任务):
需要满足以下条件:
  1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)
  2.job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)
  3.job的reduce数必须为0或者1
hive.exec.mode.local.auto.inputbytes.max=134217728
hive.exec.mode.local.auto.tasks.max=4
hive.exec.mode.local.auto=true
hive.mapred.local.mem:本地模式启动的JVM内存大小

2. 并发执行:
hive.exec.parallel=true ,默认为false
hive.exec.parallel.thread.number=8

3.Strict Mode:
hive.mapred.mode=true,严格模式不允许执行以下查询:
分区表上没有指定了分区
没有limit限制的order by语句
笛卡尔积:JOIN时没有ON语句

4.动态分区:
hive.exec.dynamic.partition.mode=strict:该模式下必须指定一个静态分区
hive.exec.max.dynamic.partitions=1000
hive.exec.max.dynamic.partitions.pernode=100:在每一个mapper/reducer节点允许创建的最大分区数
DATANODE:dfs.datanode.max.xceivers=8192:允许DATANODE打开多少个文件

5.推测执行:
mapred.map.tasks.speculative.execution=true
mapred.reduce.tasks.speculative.execution=true
hive.mapred.reduce.tasks.speculative.execution=true;

6.Single MapReduce MultiGROUP BY
hive.multigroupby.singlemar=true:当多个GROUP BY语句有相同的分组列,则会优化为一个MR任务

7. hive.exec.rowoffset:是否提供虚拟列

8. 分组
两个聚集函数不能有不同的DISTINCT列,以下表达式是错误的:
INSERT OVERWRITE TABLE pv_gender_agg SELECT pv_users.gender,
count(DISTINCT pv_users.userid), count(DISTINCT pv_users.ip) FROM
pv_users GROUP BY pv_users.gender;
SELECT语句中只能有GROUP BY的列或者聚集函数。

9.
hive.map.aggr=true;在map中会做部分聚集操作,效率更高但需要更多的内存。
hive.groupby.mapaggr.checkinterval:在Map端进行聚合操作的条目数目

10.
hive.groupby.skewindata=true:数据倾斜时负载均衡,当选项设定为true,生成的查询计划会有两个MRJob。第一个MRJob 中,
Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的GroupBy Key
有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MRJob再根据预处理的数据结果按照GroupBy Key分布到
Reduce中(这个过程可以保证相同的GroupBy Key被分布到同一个Reduce中),最后完成最终的聚合操作。

11.Multi-Group-By Inserts:
FROM test
INSERT OVERWRITE TABLE count1
SELECT count(DISTINCT test.dqcode)
GROUP BY test.zipcode
INSERT OVERWRITE TABLE count2
SELECT count(DISTINCT test.dqcode)
GROUP BY test.sfcode;

12.排序
ORDER BY colName ASC/DESC
hive.mapred.mode=strict时需要跟limit子句
hive.mapred.mode=nonstrict时使用单个reduce完成排序
SORT BY colName ASC/DESC :每个reduce内排序
DISTRIBUTE BY(子查询情况下使用 ):控制特定行应该到哪个reducer,并不保证reduce内数据的顺序
CLUSTER BY :当SORT BY 、DISTRIBUTE BY使用相同的列时。

13.合并小文件
hive.merg.mapfiles=true:合并map输出
hive.merge.mapredfiles=false:合并reduce输出
hive.merge.size.per.task=256*1000*1000:合并文件的大小
hive.mergejob.maponly=true:如果支持CombineHiveInputFormat则生成只有Map的任务执行merge
hive.merge.smallfiles.avgsize=16000000:文件的平均大小小于该值时,会启动一个MR任务执行merge。

14.map/reduce数目
减少map数目:
  set mapred.max.split.size
  set mapred.min.split.size
  set mapred.min.split.size.per.node
  set mapred.min.split.size.per.rack
  set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
增加map数目:
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:
  select data_desc, count(1), count(distinct id),sum(case when …),sum(case when ...),sum(…) from a group by data_desc
如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,这样就可以用多个map任务去完成。
  set mapred.reduce.tasks=10;
  create table a_1 as select * from a distribute by rand(123);
这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。

reduce数目设置:
 参数1:hive.exec.reducers.bytes.per.reducer=1G:每个reduce任务处理的数据量
 参数2:hive.exec.reducers.max=999(0.95*TaskTracker数):每个任务最大的reduce数目
 reducer数=min(参数2,总输入数据量/参数1)
 set mapred.reduce.tasks:每个任务默认的reduce数目。典型为0.99*reduce槽数,hive将其设置为-1,自动确定reduce数目。

15.使用索引:
hive.optimize.index.filter:自动使用索引
hive.optimize.index.groupby:使用聚合索引优化GROUP BY操作

Hive优化的更多相关文章

  1. Hive 12、Hive优化

    要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...

  2. hive优化之——控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...

  3. Hive优化案例

    1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...

  4. 一起学Hive——总结常用的Hive优化技巧

    今天总结本人在使用Hive过程中的一些优化技巧,希望给大家带来帮助.Hive优化最体现程序员的技术能力,面试官在面试时最喜欢问的就是Hive的优化技巧. 技巧1.控制reducer数量 下面的内容是我 ...

  5. 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)

    第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...

  6. 大数据开发实战:Hive优化实战3-大表join大表优化

    5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优 ...

  7. 大数据开发实战:Hive优化实战1-数据倾斜及join无关的优化

    Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的 ...

  8. Hadoop生态圈-hive优化手段-作业和查询优化

    Hadoop生态圈-hive优化手段-作业和查询优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  9. 【转】Hive优化总结

    优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解Hadoop的核心能力,是hive优化的根本.这是这一年来,项目组所有成员宝贵的经验总结.   长期观察hadoo ...

  10. hive 优化 (转)

    Hive优化 Hive优化目标 在有限的资源下,执行效率更高 常见问题 数据倾斜 map数设置 reduce数设置 其他 Hive执行 HQL --> Job --> Map/Reduce ...

随机推荐

  1. zoj Gao The Sequence

    Gao The Sequence Time Limit: 2 Seconds      Memory Limit: 65536 KB You are given a sequence of integ ...

  2. ascii转int,int在转回ascii原值

    String str = "; int ascii = (int)str; String asciiStr = char(ascii);

  3. PHP去除连续空格

    <?php $note = strip_tags($value['Content']); $note = trim($note); $note = str_replace(" &quo ...

  4. php 日期时间操作-可算出几天后的时间

    本文为大家介绍一下根据PHP时间戳获取当前时期的具体方式.strtotime能将任何英文文本的日期时间描述解析为Unix时间戳,我们结合mktime()或date()格式化日期时间获取指定的时间戳,实 ...

  5. linux下如何安装配置redis及主从配置

    redis的优点:支持主从备份,操作指令丰富,支持异步的数据持久化 将 redis 安装到 /usr/local/webserver/redis 1.下载安装包 wget http://redis.g ...

  6. 【LTE基础知识】SGLTE, SVLTE, CSFB, VoLTE

    4G网络下实现语音通话功能的技术共有三种--VoLTE.SGLTE(GSM /LTE同步并发)和CSFB(电路域回落).简单来说: VoLTE就是语音数据都在4G通道内完成: SGLTE是语音走2G通 ...

  7. 在Window Embedded CE(Wince)下使用OpenNETCF进行路由表的开发

    点击打开链接 背景 在开发3G项目的是时候,发现尽管3G网络连接已经建立成功了,但是数据不能发送成功,查明原因,由于路由表的问题,导致数据往ActiveSync连接的对端,也就是PC发送,而不是发送到 ...

  8. Socket重叠IO

    1.为什么到现在才弄懂这个 不知道这个Socket重叠IO这种模型是不是socket IO完成端口的基础,不过我感觉,学习一下这个再去学习socket IO完成端口是比较有好处的. 这个Scoket重 ...

  9. ubuntu下chromium 安装flash player

    原文地址 :http://blog.sina.com.cn/s/blog_858820890102v63w.html 不记得从什么时候起,Chromium 不再支持 Netscape plugin A ...

  10. [Lonlife1031]Bob and Alice are eating food(递推,矩阵快速幂)

    题目链接:http://www.ifrog.cc/acm/problem/1031 题意:6个水果中挑出n个,使得其中2个水果个数必须是偶数,问有多少种选择方法. 设中0代表偶数,1代表奇数.分别代表 ...