hadoop疑难杂症解析
1:Shuffle Error: Exceeded MAX_FAILED_UNIQUE_FETCHES; bailing-out
Answer:
程序里面需要打开多个文件,进行分析,系统一般默认数量是1024,(用ulimit -a可以看到)对于正常使用是够了,但是对于程序来讲,就太少了。
修改办法:
修改2个文件。
/etc/security/limits.conf
vi /etc/security/limits.conf
加上:
* soft nofile 102400
* hard nofile 409600
$cd /etc/pam.d/
$sudo vi login
添加 session required /lib/security/pam_limits.so
2:Too many fetch-failures
Answer:
出现这个问题主要是结点间的连通不够全面。
1) 检查 、/etc/hosts
要求本机ip 对应 服务器名
要求要包含所有的服务器ip + 服务器名
2) 检查 .ssh/authorized_keys
要求包含所有服务器(包括其自身)的public key
3:处理速度特别的慢 出现map很快 但是reduce很慢 而且反复出现 reduce=0%
Answer:
结合第二点,然后
修改 conf/hadoop-env.sh 中的export HADOOP_HEAPSIZE=4000
4:能够启动datanode,但无法访问,也无法结束的错误
在重新格式化一个新的分布式文件时,需要将你NameNode上所配置的dfs.name.dir这一namenode用来存放NameNode 持久存储名字空间及事务日志的本地文件系统路径删除,同时将各DataNode上的dfs.data.dir的路径 DataNode 存放块数据的本地文件系统路径的目录也删除。如本此配置就是在NameNode上删除/home/hadoop/NameData,在DataNode上删除/home/hadoop/DataNode1和/home/hadoop/DataNode2。这是因为Hadoop在格式化一个新的分布式文件系统时,每个存储的名字空间都对应了建立时间的那个版本(可以查看/home/hadoop /NameData/current目录下的VERSION文件,上面记录了版本信息),在重新格式化新的分布式系统文件时,最好先删除NameData 目录。必须删除各DataNode的dfs.data.dir。这样才可以使namedode和datanode记录的信息版本对应。
注意:删除是个很危险的动作,不能确认的情况下不能删除!!做好删除的文件等通通备份!!
5:java.io.IOException: Could not obtain block: blk_194219614024901469_1100 file=/user/hive/warehouse/src_20090724_log/src_20090724_log
出现这种情况大多是结点断了,没有连接上。
6:java.lang.OutOfMemoryError: Java heap space
出现这种异常,明显是jvm内存不够得原因,要修改所有的datanode的jvm内存大小。
Java -Xms1024m -Xmx4096m
一般jvm的最大内存使用应该为总内存大小的一半,我们使用的8G内存,所以设置为4096m,这一值可能依旧不是最优的值。(其实对于最好设置为真实物理内存大小的0.8)
You can assign more memory be editing the conf/mapred-site.xml file and adding the property:
<property>
<name>mapred.child.java.opts</name>
<value>-Xmx1024m</value>
</property>
7:出现map%,但是呢reduce到98%左右的时候呢,就直接进failedjobs了
解决办法:
检查mapred.map.tasks是不是设置的太多了,设置太多的话会导致处理大量的小文件
检查mapred.reduce.parallel.copies是否设置合适。
8:
系统根目录下的/tmp文件夹是不可以删除的
否则bin/hadoop jps
会出现异常:
Exception in thread "main" java.lang.NullPointerException at sun.jvmstat.perfdata.monitor.protocol.local.LocalVmManager.activeVms(LocalVmManager.java:127)
at sun.jvmstat.perfdata.monitor.protocol.local.MonitoredHostProvider.activeVms(MonitoredHostProvider.java:133)
at sun.tools.jps.Jps.main(Jps.java:45)
同时
bin/hive
Unable to create log directory /tmp/hadoopuser
2:Too many fetch-failures
Answer:
出现这个问题主要是结点间的连通不够全面。
1) 检查 、/etc/hosts
要求本机ip 对应 服务器名
要求要包含所有的服务器ip + 服务器名
2) 检查 .ssh/authorized_keys
要求包含所有服务器(包括其自身)的public key
3:处理速度特别的慢 出现map很快 但是reduce很慢 而且反复出现 reduce=0%
Answer:
结合第二点,然后
修改 conf/hadoop-env.sh 中的export HADOOP_HEAPSIZE=4000
4:能够启动datanode,但无法访问,也无法结束的错误
在重新格式化一个新的分布式文件时,需要将你NameNode上所配置的dfs.name.dir这一namenode用来存放NameNode 持久存储名字空间及事务日志的本地文件系统路径删除,同时将各DataNode上的dfs.data.dir的路径 DataNode 存放块数据的本地文件系统路径的目录也删除。如本此配置就是在NameNode上删除/home/hadoop/NameData,在DataNode上删除/home/hadoop/DataNode1和/home/hadoop/DataNode2。这是因为Hadoop在格式化一个新的分布式文件系统时,每个存储的名字空间都对应了建立时间的那个版本(可以查看/home/hadoop /NameData/current目录下的VERSION文件,上面记录了版本信息),在重新格式化新的分布式系统文件时,最好先删除NameData 目录。必须删除各DataNode的dfs.data.dir。这样才可以使namedode和datanode记录的信息版本对应。
注意:删除是个很危险的动作,不能确认的情况下不能删除!!做好删除的文件等通通备份!!
5:java.io.IOException: Could not obtain block: blk_194219614024901469_1100 file=/user/hive/warehouse/src_20090724_log/src_20090724_log
出现这种情况大多是结点断了,没有连接上。
6:java.lang.OutOfMemoryError: Java heap space
出现这种异常,明显是jvm内存不够得原因,要修改所有的datanode的jvm内存大小。
Java -Xms1024m -Xmx4096m
一般jvm的最大内存使用应该为总内存大小的一半,我们使用的8G内存,所以设置为4096m,这一值可能依旧不是最优的值。(其实对于最好设置为真实物理内存大小的0.8)
7:出现map%,但是呢reduce到98%左右的时候呢,就直接进failedjobs了
解决办法:
检查mapred.map.tasks是不是设置的太多了,设置太多的话会导致处理大量的小文件
检查mapred.reduce.parallel.copies是否设置合适。
8:
系统根目录下的/tmp文件夹是不可以删除的
否则bin/hadoop jps
会出现异常:
Exception in thread "main" java.lang.NullPointerException at sun.jvmstat.perfdata.monitor.protocol.local.LocalVmManager.activeVms(LocalVmManager.java:127)
at sun.jvmstat.perfdata.monitor.protocol.local.MonitoredHostProvider.activeVms(MonitoredHostProvider.java:133)
at sun.tools.jps.Jps.main(Jps.java:45)
同时
bin/hive
Unable to create log directory /tmp/hadoopuser
2:Too many fetch-failures
Answer:
出现这个问题主要是结点间的连通不够全面。
1) 检查 、/etc/hosts
要求本机ip 对应 服务器名
要求要包含所有的服务器ip + 服务器名
2) 检查 .ssh/authorized_keys
要求包含所有服务器(包括其自身)的public key
3:处理速度特别的慢 出现map很快 但是reduce很慢 而且反复出现 reduce=0%
Answer:
结合第二点,然后
修改 conf/hadoop-env.sh 中的export HADOOP_HEAPSIZE=4000
4:能够启动datanode,但无法访问,也无法结束的错误
在重新格式化一个新的分布式文件时,需要将你NameNode上所配置的dfs.name.dir这一namenode用来存放NameNode 持久存储名字空间及事务日志的本地文件系统路径删除,同时将各DataNode上的dfs.data.dir的路径 DataNode 存放块数据的本地文件系统路径的目录也删除。如本此配置就是在NameNode上删除/home/hadoop/NameData,在DataNode上删除/home/hadoop/DataNode1和/home/hadoop/DataNode2。这是因为Hadoop在格式化一个新的分布式文件系统时,每个存储的名字空间都对应了建立时间的那个版本(可以查看/home/hadoop /NameData/current目录下的VERSION文件,上面记录了版本信息),在重新格式化新的分布式系统文件时,最好先删除NameData 目录。必须删除各DataNode的dfs.data.dir。这样才可以使namedode和datanode记录的信息版本对应。
注意:删除是个很危险的动作,不能确认的情况下不能删除!!做好删除的文件等通通备份!!
5:java.io.IOException: Could not obtain block: blk_194219614024901469_1100 file=/user/hive/warehouse/src_20090724_log/src_20090724_log
出现这种情况大多是结点断了,没有连接上。
6:java.lang.OutOfMemoryError: Java heap space
出现这种异常,明显是jvm内存不够得原因,要修改所有的datanode的jvm内存大小。
Java -Xms1024m -Xmx4096m
一般jvm的最大内存使用应该为总内存大小的一半,我们使用的8G内存,所以设置为4096m,这一值可能依旧不是最优的值。(其实对于最好设置为真实物理内存大小的0.8)
7:出现map%,但是呢reduce到98%左右的时候呢,就直接进failedjobs了
解决办法:
检查mapred.map.tasks是不是设置的太多了,设置太多的话会导致处理大量的小文件
检查mapred.reduce.parallel.copies是否设置合适。
8:
系统根目录下的/tmp文件夹是不可以删除的
(jps is based on jvmstat and it needs to be able to secure a memory mapped file on the temporary file system.
)
否则bin/hadoop jps
会出现异常:
Exception in thread "main" java.lang.NullPointerException at sun.jvmstat.perfdata.monitor.protocol.local.LocalVmManager.activeVms(LocalVmManager.java:127)
at sun.jvmstat.perfdata.monitor.protocol.local.MonitoredHostProvider.activeVms(MonitoredHostProvider.java:133)
at sun.tools.jps.Jps.main(Jps.java:45)
同时
bin/hive
Unable to create log directory /tmp/hadoopuser
hadoop疑难杂症解析的更多相关文章
- Hadoop配置文件解析
Hadoop源码解析 2 --- Hadoop配置文件解析 1 Hadoop Configuration简介 Hadoop没有使用java.util.Properties管理配置文件, 也没有使 ...
- hadoop jobhistory解析工具汇总
1. White Elephant是LinkedIn开源的一套Hadoop 作业日志收集器和展示器,使用mapreduce作业解析jobhistory日志,得到每个用户使用的资源情况,并通过网页展示. ...
- 大数据时代之hadoop(二):hadoop脚本解析
“兵马未动,粮草先行”,要想深入的了解hadoop,我觉得启动或停止hadoop的脚本是必须要先了解的.说到底,hadoop就是一个分布式存储和计算框架,但是这个分布式环境是如何启动,管理的呢,我就带 ...
- Hadoop学习笔记(2)hadoop框架解析
Hadoop是适合大数据的分布式存储与计算平台 HDFS的架构:主从式结构 主节点只有一个NameNode,从节点可以有很多个DataNode. NameNode负责: (1)接收用户操作请求 (2) ...
- [Hadoop]Hadoop章1 Hadoop原理解析
Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统.最核心的模块包括Hadoop Common.HDFS与MapReduce. HDFS HDFS是Hadoop分布式文件系统(H ...
- hadoop之 解析HDFS的写文件流程
文件是如何写入HDFS的 ? 下面我们来先看看下面的“写”流程图: 假如我们有一个文件test.txt,想要把它放到Hadoop上,执行如下命令: 引用 # hadoop fs - ...
- sqlserver的疑难杂症解析
1.电脑修改ip后ssms通过ip访问失败 通过计算机名可以访问成功,但通过修改后的ip访问却失败了! 解决方法:打开Sql Server Configuration Manager -> SQ ...
- org.apache.hadoop.conf-Configuration
终于遇到第一块硬骨头 Hadoop没有使用java.util.Properties管理配置文件,而是自己定义了一套配置文件管理系统和自己的API. package org.apache.hadoop. ...
- 大数据时代之hadoop(五):hadoop 分布式计算框架(MapReduce)
大数据时代之hadoop(一):hadoop安装 大数据时代之hadoop(二):hadoop脚本解析 大数据时代之hadoop(三):hadoop数据流(生命周期) 大数据时代之hadoop(四): ...
随机推荐
- 关于如何将Excel数据导入到SQL Server中
面对大量的Excel数据我们可能会非常苦恼,如果一条一条的插入到数据库:不仅会耗大量的时间,而且还可能会发生错误,现在我来说一下如何导入数据! 1.准备工作 首先要在Excel中建立数据表对应的数据字 ...
- [原创]一个纯css实现兼容各种主流移动pc浏览器的时间轴
废话不多说 Demo 高度完全的自适应 中心思想是table 和第二列行高的50%的上下绝对定位竖线 第一次用codepen less完全不能用啊 连node png之类的都是关键词会被去掉... 马 ...
- 关于 ajax 动态返回数据 css 以及 js 失效问题
ajax 毕竟是异步的 所以动态加载出来的数据 难免遇到 css 或者 js 失效的问题,所以要动态加载 css ji等文件了 1.公共方法 load //动态加载 js /css function ...
- iOS 进阶 第十六天(0419)
0419 任何view默认不支持多点触控,有一个属性设置Multiple Touch,设置为Yes即可支持多点触控 触摸移动一个view,让view也跟着动代码 关于触摸的一些解释: 注意:touch ...
- JS-数值篇
数值(一) 一.数值 163——整型 3.14——符点数 2.5e11——科学计数法 0xfa1b——16进制 二.运算 1.Math.abs(x)——绝对值 举例:Math.abs(5) //5 M ...
- MVC 数据验证收集代码
控制器 Home using System; using System.Collections.Generic; using System.Linq; using System.Web; using ...
- Elasticseach部分语法总结
索引 在Elasticsearch中,文档归属于一种类型(type),而这些类型存在于索引(index)中,我们可以画一些简单的对比图来类比传统关系型数据库 Relational DB -> D ...
- Oracle Client Language Problem
If you execute SP in the Oracle client and got the error like this: oracle.xdo.XDOException: oracl ...
- Codeforces Round #131 (Div. 2) E. Relay Race dp
题目链接: http://codeforces.com/problemset/problem/214/E Relay Race time limit per test4 secondsmemory l ...
- 【转载】Sencha Touch 提高篇 组件选择器
免责声明: 本文转自网络文章,转载此文章仅为个人收藏,分享知识,如有侵权,请联系博主进行删除. 原文作者:威老 原文地址:http://www.cnblogs.com/weil ...