sk_buff 结构分析
sk_buff分析
sk_buff是Linux网络代码中最重要的结构体之一。它是Linux在其协议栈里传送的结构体,也就是所谓的“包”,在他里面包含了各层协议的头部,比如ethernet, ip ,tcp ,udp等等。也有相关的操作等。熟悉他是进一步了解Linux网络协议栈的基础。
此结构定义在<include/linux/skbuff.h>头文件中,结构体布局大致可分为以下四部分:
l 布局(layout)
l 通用(general)
l 功能专用(feature-specific)
l 管理函数(management functions)
网络选项以及内核结构
我们可以看到在此结构体里有很多预处理,他是在需要指定相应功能时才起作用,我们在这里先对通用的作出分析。
布局字段:
sk_buff是一个复杂的双向链表,在他结构中有next和prev指针,分别指向链表的下一个节点和前一个节点。并且为了某些需求(不知道是哪些目前)需要很快定位到链表头部,所以还有一个指向链表头部的指针list(我在2.6.25内核没有发现这个指针)。
sk_buff_head结构是:
struct sk_buff_head {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;
__u32 qlen; //代表元素节点数目
spinlock_t lock; //加锁,防止对表的并发访问
};
struct sock *sk
这个指针指向一个套接字sock数据结构。当数据在本地产生或者本地进程接受时,需要这个指针;里面的数据会有tcp/udp和用户态程序使用。如果是转发此指针为NULL
unsigned int len
缓冲区中数据块大小。长度包括:主要缓冲区(head所指)的数据以及一些片断(fragment)的数据。当包在协议栈向上或向下走时,其大小会变,因为有头部的丢弃和添加。
unsigned int data_len
片段中数据大小
unsigned int mac_len
mac包头大小
atomic_t users
引用计数,使用这个sk_buff的使用者的数目,可能有多个函数要使用同一个sk_buff所以防止提前释放掉,设置此计数
unsigned int truesize
此缓冲区总大小,包括sk_buff。sk_buff只不过是个指针的集合,他所指的才是真正的数据区,所以是两部分。(见下图)
sk_buff_data_t tail;
sk_buff_data_t end;
unsigned char *head, *data;
这些指针很重要,他们指向的是真正的数据区,他们的边界。head和end指向的是数据区的开端和尾端(注意和data,tail区别)如下图,data和tail指向的是实际数据的开头和结尾。
因为数据区在协议栈走的时候要一层层添加或去掉一些数据(比如报头)所以申请一块大的足够的内存,然后在往里放东西。真实的实际数据可能用不了这么多,所以用data,tail指向真实的,head,tail指向边界。刚开始没填充数据时前三个指针指向的是一个地方。
void (*destructor) (…….)
此函数指针被初始化一个函数,当此缓冲区删除时,完成某些工作。
通用字段
struct timeval stamp(2.6.25没有,估计是ktime_t tstamp)
时间戳,表示何时被接受或有时表示包预定的传输时间
struct net_device *dev
描述一个网络设备,我会以后分析他。
sk_buff_data_t transport_header; //L4
sk_buff_data_t network_header; //L3
sk_buff_data_t mac_header; //L2
这些指针分别指向报文头部,和2.4版本比较有了变化,不再是联合体,使用更加方便了,Linux给出了很方便的函数直接定位到各层的头部。下图是2.4版本的,只是说明一下。
struct dst_entry dst
路由子系统使用。目前不知道怎么回事呢。据说比较复杂。
char cb[40]
缓冲控制区,用来存储私有信息的空间。比如tcp用这个空间存储一个结构体tcp_skb_cb ,可以用宏TCP_SKB_CB(__skb)定位到他,然后使用里面的变量。
ip_summed:2
__wsum csum;
校验和
unsigned char pkt_type
根据L2层帧的目的地址进行类型划分。
unsigned char cloned
表示该结构是另一个sk_buff克隆的。
__u32 priority;
QoS等级
__be16 protocol;
从L2层设备驱动看使用在下一个较高层的协议。
功能专用字段
Linux是模块化的,你编译时可以带上特定功能,比如netfilter等,相应的字段才会生效。应该是那些预定义控制的。
管理函数
下面这个图是:(a*)skb_put; (b*) skb_push; (c*) skb_pull (d*) skb_reserve的使用,主要是对skb_buf所指向的数据区的指针移动。(数据预留以及对齐)
下图是用skb_reserve函数,把一个14字节的ethernet帧拷贝到缓冲区。skb_reserve(skb, 2), 2表示16字节对齐。14+2=16
下图是穿过协议栈从tcp层向下到链路层的过程
分配内存:
alloc_skb 分配缓冲区和一个sk_buff结构
dev_alloc_skb 设备驱动程序使用的缓冲区分配函数
释放内存:
kfree_skb 只有skb->users计数器为1时才释放
dev_kfree_skb
缓冲区克隆函数 skb_clone
列表管理函数:
skb_queue_head_init
队列初始化
skb_queue_head , skb_queue_tail
把一个缓冲区添加到队列头或尾
skb_dequeue, skb_dequeue_tail
从头或尾去掉
skb_queue_purge
把队列变空
skb_queue_walk
循环队列每个元素
#ifdef NET_SKBUFF_DATA_USES_OFFSET
如果使用了offset来表示偏移的话,就是说是一个相对偏移的情况:
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
return skb->head + skb->transport_header;
}
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
skb->transport_header = skb->data - skb->head;
}
static inline void skb_set_transport_header(struct sk_buff *skb,
const int offset)
{
skb_reset_transport_header(skb);
skb->transport_header += offset;
}
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
return skb->head + skb->network_header;
}
static inline void skb_reset_network_header(struct sk_buff *skb)
{
skb->network_header = skb->data - skb->head;
}
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
skb_reset_network_header(skb);
skb->network_header += offset;
}
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
{
return skb->head + skb->mac_header;
}
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
{
return skb->mac_header != ~0U;
}
static inline void skb_reset_mac_header(struct sk_buff *skb)
{
skb->mac_header = skb->data - skb->head;
}
static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
skb_reset_mac_header(skb);
skb->mac_header += offset;
}
#else /* NET_SKBUFF_DATA_USES_OFFSET */
不使用相对偏移的情况
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
return skb->transport_header;
}
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
skb->transport_header = skb->data;
}
static inline void skb_set_transport_header(struct sk_buff *skb,
const int offset)
{
skb->transport_header = skb->data + offset;
}
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
return skb->network_header;
}
static inline void skb_reset_network_header(struct sk_buff *skb)
{
skb->network_header = skb->data;
}
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
skb->network_header = skb->data + offset;
}
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
{
return skb->mac_header;
}
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
{
return skb->mac_header != NULL;
}
static inline void skb_reset_mac_header(struct sk_buff *skb)
{
skb->mac_header = skb->data;
}
static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
skb->mac_header = skb->data + offset;
}
#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 、TCP层获取相关偏移的函数
static inline struct tcphdr *tcp_hdr(const struct sk_buff *skb)
{
return (struct tcphdr *)skb_transport_header(skb);
}
这个函数用来获得sk_buff结构中TCP头的指针
static inline unsigned int tcp_hdrlen(const struct sk_buff *skb)
{
return tcp_hdr(skb)->doff * ;
}
这个函数用来获得TCP头的长度
static inline unsigned int tcp_optlen(const struct sk_buff *skb)
{
return (tcp_hdr(skb)->doff - ) * ;
}
获取tcp option的长度
、IP相关的函数
static inline struct iphdr *ip_hdr(const struct sk_buff *skb)
{
return (struct iphdr *)skb_network_header(skb);
}
该函数获得ip头
static inline struct iphdr *ipip_hdr(const struct sk_buff *skb)
{
return (struct iphdr *)skb_transport_header(skb);
}
该函数获得ipip头,实际上偏移已经跑到了传输层的开始
、MAC相关函数
static inline struct ebt_802_3_hdr *ebt_802_3_hdr(const struct sk_buff *skb)
{
return (struct ebt_802_3_hdr *)skb_mac_header(skb);
}
获取802.3MAC头指针。 static inline struct ethhdr *eth_hdr(const struct sk_buff *skb)
{
return (struct ethhdr *)skb_mac_header(skb);
}
获取以太网MAC头指针。以太网头指针结构体:
struct ethhdr {
unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
unsigned char h_source[ETH_ALEN]; /* source ether addr */
__be16 h_proto; /* packet type ID field */
} __attribute__((packed)); 内核中网络地址转化为字符串形式的IP地址的宏定义:
#define NIPQUAD(addr) \
((unsigned char *)&addr)[], \
((unsigned char *)&addr)[], \
((unsigned char *)&addr)[], \
((unsigned char *)&addr)[]
#define NIPQUAD_FMT "%u.%u.%u.%u"
转发自http://www.cnblogs.com/iceocean/articles/1594160.html
sk_buff 结构分析的更多相关文章
- 【linux驱动分析】之dm9000驱动分析(三):sk_buff结构分析
[linux驱动分析]之dm9000驱动分析(一):dm9000原理及硬件分析 [linux驱动分析]之dm9000驱动分析(二):定义在板文件里的资源和设备以及几个宏 [linux驱动分析]之dm9 ...
- sk_buff封装和解封装网络数据包的过程详解
转自:http://www.2cto.com/os/201502/376226.html 可以说sk_buff结构体是Linux网络协议栈的核心中的核心,几乎所有的操作都是围绕sk_buff这个结构体 ...
- sk_buff 里的len, data_len, skb_headlen
http://blog.csdn.net/kakadiablo/article/details/7948414 struct sk_buff *skb; skb->len 是data长度,包含所 ...
- sk_buff封装和解封装网络数据包的过程详解(转载)
http://dog250.blog.51cto.com/2466061/1612791 可以说sk_buff结构体是Linux网络协议栈的核心中的核心,几乎所有的操作都是围绕sk_buff这个结构体 ...
- Facebook的体系结构分析---外文转载
Facebook的体系结构分析---外文转载 From various readings and conversations I had, my understanding of Facebook's ...
- linux2.6.24内核源代码分析(1)——扒一扒sk_buff
最近研究了linux内核的网络子系统上的网络分组的接收与发送的流程,发现这个叫sk_buff的东西无处不在,内核利用了这个结构来管理分组,在各个层中传递这个结构,因此sk_buff可以说是linux内 ...
- Android项目目录结构分析
Android项目目录结构分析 1.HelloWorld项目的目录结构1.1.src文件夹1.2.gen文件夹1.3.Android 2.1文件夹1.4.assets 1.5.res文件夹1.6.An ...
- 【转载】nedmalloc结构分析
原文:nedmalloc结构分析 nedmalloc是一个跨平台的高性能多线程内存分配库,很多库都使用它,例如:OGRE.现在我们来看看nedmalloc的实现 (以WIN32部分为例) 位操作 ...
- laravel5-目录结构分析
laravel5-目录结构分析 (2016-01-21 11:24:03) 转载▼ 一.环境配置: $ lsb_release -a No LSB modules are available. ...
随机推荐
- XHR——XMLHttpRequest对象
创建XMLHttpRequest对象 与之前众多DOM操作一样,创建XHR对象也具有兼容性问题:IE6及之前的版本使用ActiveXObject,IE7之后及其它浏览器使用XMLHttpRequest ...
- 【bzoj3160】万径人踪灭
题意:给一个只含a.b的字符串,求所有的回文不连续子序列. manacher+FFT. 先求出所有回文序列,再减去连续子序列(即回文串). 将a.b分开考虑,对于一个对称轴,以其为回文中心的回文序列的 ...
- 读取raw文件的方法。
Android开发者有些文件比如音频,视频,.html,.mp3等等这些文件不希望编译器编译而保持原始原貌打包进apk文件(这在游戏开发中很常见和普遍,如游戏用到的游戏音乐.图等资源),那么可以使用A ...
- 完美实现自己的GetProcAddress函数(转载)
我们知道kernel32.dll里有一个GetProcAddress函数,可以找到模块中的函数地址,函数原型是这样的: WINBASEAPI FARPROC WINAPI GetProcAddress ...
- POJ 1753 Flip Game 状态压缩,暴力 难度:1
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4863 Accepted: 1983 Descript ...
- Windows7下U盘安装Ubuntu14.04双系统
1.准备工作 (1)下载Ubuntu14.04系统镜像文件,Ultraiso,EasyBcd,分区助手 Ubuntu14.04地址:http://www.ubuntu.com/download/des ...
- ssh curl 命令理解
使用一条命令抓取一本小说 curl "http://www.23hh.com/book/1/1019/"|iconv -c -f gbk -t utf8 |sed 's/" ...
- invalid types 'int[int]' for array subscrip
定义重复 如 一个int r 与一个 r[i] 重复
- 数据结构-bubble sort
#gcc version 4.5.3 (GCC) #include <iostream> #include <algorithm> template <typename ...
- Visual Studio 中的头文件、源文件和资源文件都是什么?有什么区别??
头文件:后缀为.h,主要是定义和声明之类的,比如类的定义,常量定义源文件:后缀.cpp,主要是实现之类的,比如类方法的实现资源文件主要是你用到的一些程序代码以外的东西,比如图片之类,或者菜单.工具栏之 ...