308. Range Sum Query 2D - Mutable
题目:
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
Note:
- The matrix is only modifiable by the update function.
- You may assume the number of calls to update and sumRegion function is distributed evenly.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
链接: http://leetcode.com/problems/range-sum-query-2d-mutable/
题解:
二维Range Sum Query mutable,我了个去,第一次Leetcode写了超过140行代码...足够臭长了吧,但是居然能ac,还是很高兴 -____-!! 原理是要构建一个2D Segment Tree或者 2D Fenwick Tree。由于上一题是先做的Segment Tree,这回也先写2D Segment Tree。构建2D Segment Tree依然是使用Divide and Conquer,我们要把整个平面分成4个部分,所以2D Segment Tree也是一个Quad Tree,每个节点有四个子节点,NW, NE, SW, SE, 节点的sum是四个子节点的sum。这样我们就可以用与1D Segment Tree类似的方法来写rangeSum以及update。要注意rangeSum时的判断,有好几种情况,比较复杂。
2D Segment Tree: Time Complexity - O(mn) build,O(logmn) update, O(logmn) rangeSum , Space Complexity - O(mn) 复杂度算得不是很清楚,很可能不正确,二刷再继续改正。
public class NumMatrix {
private class SegmentTreeNode2D {
public int tlRow;
public int tlCol;
public int brRow;
public int brCol;
public int sum;
public SegmentTreeNode2D nw, ne, sw, se;
public SegmentTreeNode2D(int tlRow, int tlCol, int brRow, int brCol) {
this.tlRow = tlRow;
this.tlCol = tlCol;
this.brRow = brRow;
this.brCol = brCol;
this.sum = 0;
}
}
public SegmentTreeNode2D root;
public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
root = buildTree(matrix, 0, 0, matrix.length - 1, matrix[0].length - 1);
}
public void update(int row, int col, int val) {
update(root, row, col, val);
}
private void update(SegmentTreeNode2D node, int row, int col, int val) {
if(node.tlRow == row && node.brRow == row && node.tlCol == col && node.brCol == col) {
node.sum = val;
return;
}
int rowMid = node.tlRow + (node.brRow - node.tlRow) / 2;
int colMid = node.tlCol + (node.brCol - node.tlCol) / 2;
if(row <= rowMid) {
if(col <= colMid) {
update(node.nw, row, col, val);
} else {
update(node.ne, row, col, val);
}
} else {
if(col <= colMid) {
update(node.sw, row, col, val);
} else {
update(node.se, row, col, val);
}
}
node.sum = 0;
if(node.nw != null) {
node.sum += node.nw.sum;
}
if(node.ne != null) {
node.sum += node.ne.sum;
}
if(node.sw != null) {
node.sum += node.sw.sum;
}
if(node.se != null) {
node.sum += node.se.sum;
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
return sumRegion(root, row1, col1, row2, col2);
}
private int sumRegion(SegmentTreeNode2D node, int tlRow, int tlCol, int brRow, int brCol) {
if(node.tlRow == tlRow && node.tlCol == tlCol && node.brRow == brRow && node.brCol == brCol) {
return node.sum;
}
int rowMid = node.tlRow + (node.brRow - node.tlRow) / 2;
int colMid = node.tlCol + (node.brCol - node.tlCol) / 2;
if(brRow <= rowMid) { // top-half plane
if(brCol <= colMid) { // north-west quadrant
return sumRegion(node.nw, tlRow, tlCol, brRow, brCol);
} else if(tlCol > colMid) { // north-east quadrant
return sumRegion(node.ne, tlRow, tlCol, brRow, brCol);
} else { // intersection between nw and ne
return sumRegion(node.nw, tlRow, tlCol, brRow, colMid) + sumRegion(node.ne, tlRow, colMid + 1, brRow, brCol);
}
} else if(tlRow > rowMid) { // bot-half plane
if(brCol <= colMid) { // south-west quadrant
return sumRegion(node.sw, tlRow, tlCol, brRow, brCol);
} else if(tlCol > colMid) { // south-east quadrant
return sumRegion(node.se, tlRow, tlCol, brRow, brCol);
} else { //intersection between sw and sw
return sumRegion(node.sw, tlRow, tlCol, brRow, colMid) + sumRegion(node.se, tlRow, colMid + 1, brRow, brCol);
}
} else { // full-plane intersection
if(brCol <= colMid) { // left half plane
return sumRegion(node.nw, tlRow, tlCol, rowMid, brCol) + sumRegion(node.sw, rowMid + 1, tlCol, brRow, brCol) ;
} else if(tlCol > colMid) { // right half plane
return sumRegion(node.ne, tlRow, tlCol, rowMid, brCol) + sumRegion(node.se, rowMid + 1, tlCol, brRow, brCol) ;
} else { // full-plane intersection
return sumRegion(node.nw, tlRow, tlCol, rowMid, colMid)
+ sumRegion(node.ne, tlRow, colMid + 1, rowMid, brCol)
+ sumRegion(node.sw, rowMid + 1, tlCol, brRow, colMid)
+ sumRegion(node.se, rowMid + 1, colMid + 1, brRow, brCol);
}
}
}
private SegmentTreeNode2D buildTree(int[][] matrix, int tlRow, int tlCol, int brRow, int brCol) {
if(tlRow > brRow || tlCol > brCol) {
return null;
} else {
SegmentTreeNode2D node = new SegmentTreeNode2D(tlRow, tlCol, brRow, brCol);
if(tlRow == brRow && tlCol == brCol) {
node.sum = matrix[tlRow][tlCol];
} else {
int rowMid = tlRow + (brRow - tlRow) / 2;
int colMid = tlCol + (brCol - tlCol) / 2;
node.nw = buildTree(matrix, tlRow, tlCol, rowMid, colMid);
node.ne = buildTree(matrix, tlRow, colMid + 1, rowMid, brCol);
node.sw = buildTree(matrix, rowMid + 1, tlCol, brRow, colMid);
node.se = buildTree(matrix, rowMid + 1, colMid + 1, brRow, brCol);
node.sum = 0;
if(node.nw != null) {
node.sum += node.nw.sum;
}
if(node.ne != null) {
node.sum += node.ne.sum;
}
if(node.sw != null) {
node.sum += node.sw.sum;
}
if(node.se != null) {
node.sum += node.se.sum;
}
}
return node;
}
}
}
// Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);
2D Fenwick Tree: -- 看了Quora一个acm大神的post以后,我决定还是要使用2D Fenwick Tree来做这题。 “https://www.quora.com/How-does-a-2D-segment-tree-work” ,代码肯定比Segment Tree简洁,而且速度也会更快。基本方法和1D非常类似,这种方法甚至可以简单地扩展到更高维度。
Time Complexity - O(mnlogm * logn) build, O(logmn) update, O(logmn) rangeSum, Space Complexity - O(mn)
public class NumMatrix {
private int BIT2D[][];
private int matrix[][];
public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
BIT2D = new int[matrix.length + 1][matrix[0].length + 1];
this.matrix = new int[matrix.length][matrix[0].length];
for(int i = 0; i < matrix.length; i++) {
for(int j = 0; j < matrix[0].length; j++) {
update(i, j, matrix[i][j]);
}
}
}
public void update(int row, int col, int val) {
int delta = val - matrix[row][col];
matrix[row][col] = val;
for(int i = row + 1; i < BIT2D.length; i += i & (-i)) { //also equals to i |= i + 1
for(int j = col + 1; j < BIT2D[0].length; j += j & (-j)) {
BIT2D[i][j] += delta;
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
return getSum(row2 + 1, col2 + 1) - getSum(row1, col2 + 1) - getSum(row2 + 1, col1) + getSum(row1, col1);
}
private int getSum(int row, int col) {
int sum = 0;
for(int i = row; i > 0; i -= i & (-i)) {
for(int j = col; j > 0; j -= j & (-j)) {
sum += BIT2D[i][j];
}
}
return sum;
}
}
// Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);
Reference:
https://stackoverflow.com/questions/25121878/2d-segment-quad-tree-explanation-with-c/25122078#25122078
https://sites.google.com/site/indy256/algo/fenwick_tree_2d
http://www.hawstein.com/posts/binary-indexed-trees.html
https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
http://www.wohenniu.com/thread-872-1-1.html
http://bookshadow.com/leetcode/
http://cs.nyu.edu/courses/spring14/CSCI-UA.0480-004/
https://web.stanford.edu/class/cs97si/03-data-structures.pdf
http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english
https://leetcode.com/discuss/71025/segmentation-tree-736ms-indexed-tree-492ms-based-solutions
https://leetcode.com/discuss/70992/c-solution-using-2d-binary-index-tree-easy-to-understand
https://leetcode.com/discuss/72685/share-my-java-2-d-binary-indexed-tree-solution
https://leetcode.com/discuss/71046/java-2d-binary-indexed-tree-solution-80ms
https://leetcode.com/discuss/70948/15ms-easy-to-understand-java-solution
https://leetcode.com/discuss/71169/java-2d-binary-indexed-tree-solution-clean-and-short-17ms
https://leetcode.com/problems/range-sum-query-2d-mutable/
http://www.lxway.com/5152462.htm
https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
308. Range Sum Query 2D - Mutable的更多相关文章
- LeetCode 308. Range Sum Query 2D - Mutable
原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...
- Range Sum Query 2D - Mutable & Immutable
Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...
- [Locked] Range Sum Query 2D - Mutable
Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...
- [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- LeetCode Range Sum Query 2D - Mutable
原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...
- [Swift]LeetCode308. 二维区域和检索 - 可变 $ Range Sum Query 2D - Mutable
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] Range Sum Query - Immutable & Range Sum Query 2D - Immutable
Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indice ...
随机推荐
- 微信小程序购物商城系统开发系列
微信小程序购物商城系统开发系列 微信小程序开放公测以来,一夜之间在各种技术社区中就火起来啦.对于它 估计大家都不陌生了,对于它未来的价值就不再赘述,简单一句话:可以把小程序简单理解为一个新的操作系统. ...
- snmp数据包分析
今天看了一下snmp数据包的报文格式,用wireshark抓了两个数据包来分析. 先说说snmp get-request的书报包格式吧,get-next-request,get-response,se ...
- socket 套接字
网络:交换机,路由器,网线 交换机:分配.. 路由器:找寻网络线路 网络架构: 应用层 ---> 表示层 ---> 会话层 ---> 传输层 ---> 网络层 ---> ...
- 学习ThinkPHP-1
ThinkPHP 自建路由 关于文件关联 当在Applicatin\Home\Controller文件夹下建立一个控制器时如LoginController.class.php 在此文件夹下还有一个默认 ...
- Gulp压缩JavaScript代码
因为gulp是自动化工具,所以我们得告诉它,需要怎么做,才能达到我们的目的. 我们首先得新建一个js文件,用来编写我们的需求,以便gulp能按着我们的意愿来执行. 我将这个js文件取名叫gulpfil ...
- 【长期兼职】每天3小时写作=每月4000元外快(IT兼职写手)
只要你有经验,每周平均有20来个小时的兼职时间. 只要你愿意静静地写一些心得总结. 那么就可以联系我QQ164349714,敲门:写作. 地址不限.特长不限.学历不限.年龄不限. 主要写作方向:1.投 ...
- How to find and fix Bash Shell-shock vulnerability CVE-2014-6271 in unix like system
type command - env x='() { :;}; echo vulnerable' bash -c 'echo hello' in your terminal. if your sy ...
- AngularJS打印问题
http://stackoverflow.com/questions/22189544/print-a-div-using-javascript-in-angularjs-single-page-ap ...
- SQL 语法 Join与Union
问题描述: Join与Union使用 问题解决: Join连接,可以分为: tableA如下: tableB如下: 1.1.Inner Join SELECT * FROM TableA INNER ...
- 【BZOJ】【3301】【USACO2011 Feb】Cow Line
康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...