Children are always sweet but they can sometimes make you feel bitter. In this problem, you will see
how Tintin, a five year’s old boy, creates trouble for his parents. Tintin is a joyful boy and is always
busy in doing something. But what he does is not always pleasant for his parents. He likes most to play
with household things like his father’s wristwatch or his mother’s comb. After his playing he places it
in some other place. Tintin is very intelligent and a boy with a very sharp memory. To make things
worse for his parents, he never returns the things he has taken for playing to their original places.
Think about a morning when Tintin has managed to ‘steal’ three household objects. Now, in how
many ways he can place those things such that nothing is placed in their original place. Tintin does not
like to give his parents that much trouble. So, he does not leave anything in a completely new place;
he merely permutes the objects.
Input
There will be several test cases. Each will have a positive integer less than or equal to 800 indicating
the number of things Tintin has taken for playing. Each integer will be in a line by itself. The input
is terminated by a ‘-1’ (minus one) in a single line, which should not be processed.
Output
For each test case print an integer indicating in how many ways Tintin can rearrange the things he has
taken.
Sample Input
2
3
4
-1
Sample Output
1
2
9

题意:一个小孩,趁家长不在,拿家里的n个 家具玩,玩了之后放回,而且好坏,一定不是原来的位置(每个都不是),问你有多少种放法

题解:设dp[i]表示  放回i个的方法数,那么  dp[i] = (i-1)*(dp[i-1]+dp[i-2]);

对于第i个数,放在序列的最后一个位置,它的位置一定是正确的,所以一定要和前面i−1个的其中一个交换位置才可以,那么如果选中位置上的物品为错误归放的,即为dp[i−1],如果选中的位置上的物品为正确归放的,即为dp[i−2]

//meek///#include<bits/stdc++.h>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<bitset>
#include<vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll; const int N = +;
const int M = ;
const int inf = 0x3f3f3f3f;
const ll MOD = ; #define MAX_L 20005 //最大长度,可以修改 class bign
{
public:
int len, s[MAX_L];//数的长度,记录数组
//构造函数
bign();
bign(const char*);
bign(int);
bool sign;//符号 1正数 0负数
string toStr() const;//转化为字符串,主要是便于输出
friend istream& operator>>(istream &,bign &);//重载输入流
friend ostream& operator<<(ostream &,bign &);//重载输出流
//重载复制
bign operator=(const char*);
bign operator=(int);
bign operator=(const string);
//重载各种比较
bool operator>(const bign &) const;
bool operator>=(const bign &) const;
bool operator<(const bign &) const;
bool operator<=(const bign &) const;
bool operator==(const bign &) const;
bool operator!=(const bign &) const;
//重载四则运算
bign operator+(const bign &) const;
bign operator++();
bign operator++(int);
bign operator+=(const bign&);
bign operator-(const bign &) const;
bign operator--();
bign operator--(int);
bign operator-=(const bign&);
bign operator*(const bign &)const;
bign operator*(const int num)const;
bign operator*=(const bign&);
bign operator/(const bign&)const;
bign operator/=(const bign&);
//四则运算的衍生运算
bign operator%(const bign&)const;//取模(余数)
bign factorial()const;//阶乘
bign Sqrt()const;//整数开根(向下取整)
bign pow(const bign&)const;//次方
//一些乱乱的函数
void clean();
~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b bign::bign()
{
memset(s, , sizeof(s));
len = ;
sign = ;
} bign::bign(const char *num)
{
*this = num;
} bign::bign(int num)
{
*this = num;
} string bign::toStr() const
{
string res;
res = "";
for (int i = ; i < len; i++)
res = (char)(s[i] + '') + res;
if (res == "")
res = "";
if (!sign&&res != "")
res = "-" + res;
return res;
} istream &operator>>(istream &in, bign &num)
{
string str;
in>>str;
num=str;
return in;
} ostream &operator<<(ostream &out, bign &num)
{
out<<num.toStr();
return out;
} bign bign::operator=(const char *num)
{
memset(s, , sizeof(s));
char a[MAX_L] = "";
if (num[] != '-')
strcpy(a, num);
else
for (int i = ; i < strlen(num); i++)
a[i - ] = num[i];
sign = !(num[] == '-');
len = strlen(a);
for (int i = ; i < strlen(a); i++)
s[i] = a[len - i - ] - ;
return *this;
} bign bign::operator=(int num)
{
char temp[MAX_L];
sprintf(temp, "%d", num);
*this = temp;
return *this;
} bign bign::operator=(const string num)
{
const char *tmp;
tmp = num.c_str();
*this = tmp;
return *this;
} bool bign::operator<(const bign &num) const
{
if (sign^num.sign)
return num.sign;
if (len != num.len)
return len < num.len;
for (int i = len - ; i >= ; i--)
if (s[i] != num.s[i])
return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
return !sign;
} bool bign::operator>(const bign&num)const
{
return num < *this;
} bool bign::operator<=(const bign&num)const
{
return !(*this>num);
} bool bign::operator>=(const bign&num)const
{
return !(*this<num);
} bool bign::operator!=(const bign&num)const
{
return *this > num || *this < num;
} bool bign::operator==(const bign&num)const
{
return !(num != *this);
} bign bign::operator+(const bign &num) const
{
if (sign^num.sign)
{
bign tmp = sign ? num : *this;
tmp.sign = ;
return sign ? *this - tmp : num - tmp;
}
bign result;
result.len = ;
int temp = ;
for (int i = ; temp || i < (max(len, num.len)); i++)
{
int t = s[i] + num.s[i] + temp;
result.s[result.len++] = t % ;
temp = t / ;
}
result.sign = sign;
return result;
} bign bign::operator++()
{
*this = *this + ;
return *this;
} bign bign::operator++(int)
{
bign old = *this;
++(*this);
return old;
} bign bign::operator+=(const bign &num)
{
*this = *this + num;
return *this;
} bign bign::operator-(const bign &num) const
{
bign b=num,a=*this;
if (!num.sign && !sign)
{
b.sign=;
a.sign=;
return b-a;
}
if (!b.sign)
{
b.sign=;
return a+b;
}
if (!a.sign)
{
a.sign=;
b=bign()-(a+b);
return b;
}
if (a<b)
{
bign c=(b-a);
c.sign=false;
return c;
}
bign result;
result.len = ;
for (int i = , g = ; i < a.len; i++)
{
int x = a.s[i] - g;
if (i < b.len) x -= b.s[i];
if (x >= ) g = ;
else
{
g = ;
x += ;
}
result.s[result.len++] = x;
}
result.clean();
return result;
} bign bign::operator * (const bign &num)const
{
bign result;
result.len = len + num.len; for (int i = ; i < len; i++)
for (int j = ; j < num.len; j++)
result.s[i + j] += s[i] * num.s[j]; for (int i = ; i < result.len; i++)
{
result.s[i + ] += result.s[i] / ;
result.s[i] %= ;
}
result.clean();
result.sign = !(sign^num.sign);
return result;
} bign bign::operator*(const int num)const
{
bign x = num;
bign z = *this;
return x*z;
}
bign bign::operator*=(const bign&num)
{
*this = *this * num;
return *this;
} bign bign::operator /(const bign&num)const
{
bign ans;
ans.len = len - num.len + ;
if (ans.len < )
{
ans.len = ;
return ans;
} bign divisor = *this, divid = num;
divisor.sign = divid.sign = ;
int k = ans.len - ;
int j = len - ;
while (k >= )
{
while (divisor.s[j] == ) j--;
if (k > j) k = j;
char z[MAX_L];
memset(z, , sizeof(z));
for (int i = j; i >= k; i--)
z[j - i] = divisor.s[i] + '';
bign dividend = z;
if (dividend < divid) { k--; continue; }
int key = ;
while (divid*key <= dividend) key++;
key--;
ans.s[k] = key;
bign temp = divid*key;
for (int i = ; i < k; i++)
temp = temp * ;
divisor = divisor - temp;
k--;
}
ans.clean();
ans.sign = !(sign^num.sign);
return ans;
} bign bign::operator/=(const bign&num)
{
*this = *this / num;
return *this;
} bign bign::operator%(const bign& num)const
{
bign a = *this, b = num;
a.sign = b.sign = ;
bign result, temp = a / b*b;
result = a - temp;
result.sign = sign;
return result;
} bign bign::pow(const bign& num)const
{
bign result = ;
for (bign i = ; i < num; i++)
result = result*(*this);
return result;
} bign bign::factorial()const
{
bign result = ;
for (bign i = ; i <= *this; i++)
result *= i;
return result;
} void bign::clean()
{
if (len == ) len++;
while (len > && s[len - ] == '\0')
len--;
} bign bign::Sqrt()const
{
if(*this<)return -;
if(*this<=)return *this;
bign l=,r=*this,mid;
while(r-l>)
{
mid=(l+r)/;
if(mid*mid>*this)
r=mid;
else
l=mid;
}
return l;
} bign::~bign()
{
} bign dp[N];
void init() {
dp[] = ;
dp[] = ;
bign tmp = ;
for(int i=;i<=;i=i+) {
dp[i] = (tmp)*(dp[i-] + dp[i-]);
tmp+=;
}
}
int main() {
init();
int n;
while(scanf("%d",&n)!=EOF) {
if(n==-) break;
cout<<dp[n]<<endl;
}
return ;
}

代码

UVA 10497 - Sweet Child Makes Trouble 高精度DP的更多相关文章

  1. 递推+高精度 UVA 10497 Sweet Child Makes Trouble(可爱的孩子惹麻烦)

    题目链接 题意: n个物品全部乱序排列(都不在原来的位置)的方案数. 思路: dp[i]表示i个物品都乱序排序的方案数,所以状态转移方程.考虑i-1个物品乱序,放入第i个物品一定要和i-1个的其中一个 ...

  2. UVA-10497 Sweet Child Makes Trouble (计数+高精度)

    题目大意:这是一道简单排列组合题 .简单说下题意:n件物品,把这n件物品放到不是原来的位置,问所有的方案数.所有的位置都没有变. 题目解析:按照高中的方法,很快得到一个递推公式:f [n]= (n-1 ...

  3. 容斥原理--计算错排的方案数 UVA 10497

    错排问题是一种特殊的排列问题. 模型:把n个元素依次标上1,2,3.......n,求每一个元素都不在自己位置的排列数. 运用容斥原理,我们有两种解决方法: 1. 总的排列方法有A(n,n),即n!, ...

  4. UVA.357 Let Me Count The Ways (DP 完全背包)

    UVA.357 Let Me Count The Ways (DP 完全背包) 题意分析 与UVA.UVA.674 Coin Change是一模一样的题.需要注意的是,此题的数据量较大,dp数组需要使 ...

  5. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  6. uva 10069 Distinct Subsequences(高精度 + DP求解子串个数)

    题目连接:10069 - Distinct Subsequences 题目大意:给出两个字符串x (lenth < 10000), z (lenth < 100), 求在x中有多少个z. ...

  7. UVA - 1025 A Spy in the Metro[DP DAG]

    UVA - 1025 A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especia ...

  8. Hdu 5568 sequence2 高精度 dp

    sequence2 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=556 ...

  9. sequence2(高精度dp)

    sequence2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

随机推荐

  1. ajax & jsonp & img

    ajax 是一种请求服务器的方式,核心是XMLHttpRequest对象: 优点是无需刷新页面, 缺点是不能跨域请求. /* * Ajax direacted by Zakas * * Ajax.ge ...

  2. 5 给我们的c#程序添加注释

    注释是你的程序中的一个重要部分.在程序中添加注释是用来告诉你和其他人你的程序是做什么用的,你的思路是怎样的.注释可以用你熟悉的中文进行添加. 当你想暂时把你程序中的某些语句去掉的时候,不需要把他们删除 ...

  3. sharepoint 2010 中获取system账号的真实账号

    在使用sharepoint的时候有的时候需要在后台获取当前登录用户的登录名,一般的时候使用SPContext.Current.Web.CurrentUser就可以了,但是有一个特殊的用“系统账户”,获 ...

  4. 权重轮询调度算法(Weighted Round-Robin Scheduling)-C#实现

    在多台机器实现负载均衡的时候,存在调度分配的问题. 如果服务器的配置的处理能力都一致的话,平均轮询分配可以直接解决问题,然而有些时候机器的处理能力是不一致的. 假如有2台机器 A和B , A的处理能力 ...

  5. Java面试之SE基础基本数据类型

    1.九种基本数据类型的大小以及它们的封装类 在我们面试或者考试过程中经常会考到八种基本数据类型以及它们的封装类,那么有哪八种基本数据类型呢?它们的封装类又是什么呢? 首先,八种基本数据类型分别是:in ...

  6. mysql开机脚本

    #!/bin/bash basedir=/home/app/db/mysql datadir=$basedir/data conf=$basedir/etc/my.cnf pid_file=$data ...

  7. Keystore概念,Keytool工具使用

    几个概念 keystore是一个密码保护的文件,用来存储密钥和证书(也就是说,keystore中存储的有两类型entries):这个文件(默认的)位于你的home目录,也就是你登录到操作系统的用户名的 ...

  8. 菜鸟搭建Android环境~~~~绝对靠谱

    因为要测试移动设备.搭建了一下Android环境 这是菜鸟级别的安装 因为sdk版本,eclipse版本,adt版本各自有版本要求,所以我选择都去官网下载新版本,这样总不会出现版本兼容性问题了吧~~ ...

  9. 作用域+闭包+this理解

    函数预解析过程   函数会覆盖同名变量 也就是var  他的优先级高   如果是同名函数则后者覆盖前者   逐行解读代码的时候 表达式 和参数 会改变预解析仓库里面的值..也就是表达式能干掉函数   ...

  10. Netty 对通讯协议结构设计的启发和总结

    Netty 通讯协议结构设计的总结 key words: 通信,协议,结构设计,netty,解码器,LengthFieldBasedFrameDecoder 原创 包含与机器/设备的通讯协议结构的设计 ...