Children are always sweet but they can sometimes make you feel bitter. In this problem, you will see
how Tintin, a five year’s old boy, creates trouble for his parents. Tintin is a joyful boy and is always
busy in doing something. But what he does is not always pleasant for his parents. He likes most to play
with household things like his father’s wristwatch or his mother’s comb. After his playing he places it
in some other place. Tintin is very intelligent and a boy with a very sharp memory. To make things
worse for his parents, he never returns the things he has taken for playing to their original places.
Think about a morning when Tintin has managed to ‘steal’ three household objects. Now, in how
many ways he can place those things such that nothing is placed in their original place. Tintin does not
like to give his parents that much trouble. So, he does not leave anything in a completely new place;
he merely permutes the objects.
Input
There will be several test cases. Each will have a positive integer less than or equal to 800 indicating
the number of things Tintin has taken for playing. Each integer will be in a line by itself. The input
is terminated by a ‘-1’ (minus one) in a single line, which should not be processed.
Output
For each test case print an integer indicating in how many ways Tintin can rearrange the things he has
taken.
Sample Input
2
3
4
-1
Sample Output
1
2
9

题意:一个小孩,趁家长不在,拿家里的n个 家具玩,玩了之后放回,而且好坏,一定不是原来的位置(每个都不是),问你有多少种放法

题解:设dp[i]表示  放回i个的方法数,那么  dp[i] = (i-1)*(dp[i-1]+dp[i-2]);

对于第i个数,放在序列的最后一个位置,它的位置一定是正确的,所以一定要和前面i−1个的其中一个交换位置才可以,那么如果选中位置上的物品为错误归放的,即为dp[i−1],如果选中的位置上的物品为正确归放的,即为dp[i−2]

//meek///#include<bits/stdc++.h>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<bitset>
#include<vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll; const int N = +;
const int M = ;
const int inf = 0x3f3f3f3f;
const ll MOD = ; #define MAX_L 20005 //最大长度,可以修改 class bign
{
public:
int len, s[MAX_L];//数的长度,记录数组
//构造函数
bign();
bign(const char*);
bign(int);
bool sign;//符号 1正数 0负数
string toStr() const;//转化为字符串,主要是便于输出
friend istream& operator>>(istream &,bign &);//重载输入流
friend ostream& operator<<(ostream &,bign &);//重载输出流
//重载复制
bign operator=(const char*);
bign operator=(int);
bign operator=(const string);
//重载各种比较
bool operator>(const bign &) const;
bool operator>=(const bign &) const;
bool operator<(const bign &) const;
bool operator<=(const bign &) const;
bool operator==(const bign &) const;
bool operator!=(const bign &) const;
//重载四则运算
bign operator+(const bign &) const;
bign operator++();
bign operator++(int);
bign operator+=(const bign&);
bign operator-(const bign &) const;
bign operator--();
bign operator--(int);
bign operator-=(const bign&);
bign operator*(const bign &)const;
bign operator*(const int num)const;
bign operator*=(const bign&);
bign operator/(const bign&)const;
bign operator/=(const bign&);
//四则运算的衍生运算
bign operator%(const bign&)const;//取模(余数)
bign factorial()const;//阶乘
bign Sqrt()const;//整数开根(向下取整)
bign pow(const bign&)const;//次方
//一些乱乱的函数
void clean();
~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b bign::bign()
{
memset(s, , sizeof(s));
len = ;
sign = ;
} bign::bign(const char *num)
{
*this = num;
} bign::bign(int num)
{
*this = num;
} string bign::toStr() const
{
string res;
res = "";
for (int i = ; i < len; i++)
res = (char)(s[i] + '') + res;
if (res == "")
res = "";
if (!sign&&res != "")
res = "-" + res;
return res;
} istream &operator>>(istream &in, bign &num)
{
string str;
in>>str;
num=str;
return in;
} ostream &operator<<(ostream &out, bign &num)
{
out<<num.toStr();
return out;
} bign bign::operator=(const char *num)
{
memset(s, , sizeof(s));
char a[MAX_L] = "";
if (num[] != '-')
strcpy(a, num);
else
for (int i = ; i < strlen(num); i++)
a[i - ] = num[i];
sign = !(num[] == '-');
len = strlen(a);
for (int i = ; i < strlen(a); i++)
s[i] = a[len - i - ] - ;
return *this;
} bign bign::operator=(int num)
{
char temp[MAX_L];
sprintf(temp, "%d", num);
*this = temp;
return *this;
} bign bign::operator=(const string num)
{
const char *tmp;
tmp = num.c_str();
*this = tmp;
return *this;
} bool bign::operator<(const bign &num) const
{
if (sign^num.sign)
return num.sign;
if (len != num.len)
return len < num.len;
for (int i = len - ; i >= ; i--)
if (s[i] != num.s[i])
return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
return !sign;
} bool bign::operator>(const bign&num)const
{
return num < *this;
} bool bign::operator<=(const bign&num)const
{
return !(*this>num);
} bool bign::operator>=(const bign&num)const
{
return !(*this<num);
} bool bign::operator!=(const bign&num)const
{
return *this > num || *this < num;
} bool bign::operator==(const bign&num)const
{
return !(num != *this);
} bign bign::operator+(const bign &num) const
{
if (sign^num.sign)
{
bign tmp = sign ? num : *this;
tmp.sign = ;
return sign ? *this - tmp : num - tmp;
}
bign result;
result.len = ;
int temp = ;
for (int i = ; temp || i < (max(len, num.len)); i++)
{
int t = s[i] + num.s[i] + temp;
result.s[result.len++] = t % ;
temp = t / ;
}
result.sign = sign;
return result;
} bign bign::operator++()
{
*this = *this + ;
return *this;
} bign bign::operator++(int)
{
bign old = *this;
++(*this);
return old;
} bign bign::operator+=(const bign &num)
{
*this = *this + num;
return *this;
} bign bign::operator-(const bign &num) const
{
bign b=num,a=*this;
if (!num.sign && !sign)
{
b.sign=;
a.sign=;
return b-a;
}
if (!b.sign)
{
b.sign=;
return a+b;
}
if (!a.sign)
{
a.sign=;
b=bign()-(a+b);
return b;
}
if (a<b)
{
bign c=(b-a);
c.sign=false;
return c;
}
bign result;
result.len = ;
for (int i = , g = ; i < a.len; i++)
{
int x = a.s[i] - g;
if (i < b.len) x -= b.s[i];
if (x >= ) g = ;
else
{
g = ;
x += ;
}
result.s[result.len++] = x;
}
result.clean();
return result;
} bign bign::operator * (const bign &num)const
{
bign result;
result.len = len + num.len; for (int i = ; i < len; i++)
for (int j = ; j < num.len; j++)
result.s[i + j] += s[i] * num.s[j]; for (int i = ; i < result.len; i++)
{
result.s[i + ] += result.s[i] / ;
result.s[i] %= ;
}
result.clean();
result.sign = !(sign^num.sign);
return result;
} bign bign::operator*(const int num)const
{
bign x = num;
bign z = *this;
return x*z;
}
bign bign::operator*=(const bign&num)
{
*this = *this * num;
return *this;
} bign bign::operator /(const bign&num)const
{
bign ans;
ans.len = len - num.len + ;
if (ans.len < )
{
ans.len = ;
return ans;
} bign divisor = *this, divid = num;
divisor.sign = divid.sign = ;
int k = ans.len - ;
int j = len - ;
while (k >= )
{
while (divisor.s[j] == ) j--;
if (k > j) k = j;
char z[MAX_L];
memset(z, , sizeof(z));
for (int i = j; i >= k; i--)
z[j - i] = divisor.s[i] + '';
bign dividend = z;
if (dividend < divid) { k--; continue; }
int key = ;
while (divid*key <= dividend) key++;
key--;
ans.s[k] = key;
bign temp = divid*key;
for (int i = ; i < k; i++)
temp = temp * ;
divisor = divisor - temp;
k--;
}
ans.clean();
ans.sign = !(sign^num.sign);
return ans;
} bign bign::operator/=(const bign&num)
{
*this = *this / num;
return *this;
} bign bign::operator%(const bign& num)const
{
bign a = *this, b = num;
a.sign = b.sign = ;
bign result, temp = a / b*b;
result = a - temp;
result.sign = sign;
return result;
} bign bign::pow(const bign& num)const
{
bign result = ;
for (bign i = ; i < num; i++)
result = result*(*this);
return result;
} bign bign::factorial()const
{
bign result = ;
for (bign i = ; i <= *this; i++)
result *= i;
return result;
} void bign::clean()
{
if (len == ) len++;
while (len > && s[len - ] == '\0')
len--;
} bign bign::Sqrt()const
{
if(*this<)return -;
if(*this<=)return *this;
bign l=,r=*this,mid;
while(r-l>)
{
mid=(l+r)/;
if(mid*mid>*this)
r=mid;
else
l=mid;
}
return l;
} bign::~bign()
{
} bign dp[N];
void init() {
dp[] = ;
dp[] = ;
bign tmp = ;
for(int i=;i<=;i=i+) {
dp[i] = (tmp)*(dp[i-] + dp[i-]);
tmp+=;
}
}
int main() {
init();
int n;
while(scanf("%d",&n)!=EOF) {
if(n==-) break;
cout<<dp[n]<<endl;
}
return ;
}

代码

UVA 10497 - Sweet Child Makes Trouble 高精度DP的更多相关文章

  1. 递推+高精度 UVA 10497 Sweet Child Makes Trouble(可爱的孩子惹麻烦)

    题目链接 题意: n个物品全部乱序排列(都不在原来的位置)的方案数. 思路: dp[i]表示i个物品都乱序排序的方案数,所以状态转移方程.考虑i-1个物品乱序,放入第i个物品一定要和i-1个的其中一个 ...

  2. UVA-10497 Sweet Child Makes Trouble (计数+高精度)

    题目大意:这是一道简单排列组合题 .简单说下题意:n件物品,把这n件物品放到不是原来的位置,问所有的方案数.所有的位置都没有变. 题目解析:按照高中的方法,很快得到一个递推公式:f [n]= (n-1 ...

  3. 容斥原理--计算错排的方案数 UVA 10497

    错排问题是一种特殊的排列问题. 模型:把n个元素依次标上1,2,3.......n,求每一个元素都不在自己位置的排列数. 运用容斥原理,我们有两种解决方法: 1. 总的排列方法有A(n,n),即n!, ...

  4. UVA.357 Let Me Count The Ways (DP 完全背包)

    UVA.357 Let Me Count The Ways (DP 完全背包) 题意分析 与UVA.UVA.674 Coin Change是一模一样的题.需要注意的是,此题的数据量较大,dp数组需要使 ...

  5. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  6. uva 10069 Distinct Subsequences(高精度 + DP求解子串个数)

    题目连接:10069 - Distinct Subsequences 题目大意:给出两个字符串x (lenth < 10000), z (lenth < 100), 求在x中有多少个z. ...

  7. UVA - 1025 A Spy in the Metro[DP DAG]

    UVA - 1025 A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especia ...

  8. Hdu 5568 sequence2 高精度 dp

    sequence2 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=556 ...

  9. sequence2(高精度dp)

    sequence2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

随机推荐

  1. android string.xml %问题

    反复检查后发现是string.xml中的 % 导致编译失败, 这是由于新的SDK采用了新版本的aapt(Android项目编译器),这个版本的aapt编译起来会比老版本更加的严格,然后在Android ...

  2. Java日期处理类的lenient属性

    这个特性很坑爹:@Test public void test() throws ParseException { SimpleDateFormat df = new SimpleDateFormat( ...

  3. Knockout : 实现复杂的web聊天窗体

    公司以前一个同事写的这个聊天的窗体,由于是采用了html拼接的方式,外加处理的时候没有合理的划分职责,导致页面js代码量非常庞大(1500行左右).现在这哥们离职了,苦的是我们剩下的人,不多说,我先去 ...

  4. 失败的数据库迁移UDB

    公司采用的是ucloud的云主机,数据库也是架设在云主机上.由于数据越来越多数据查询数据越来越慢,所以我决定往 UDB上迁移.当时考虑的理由如下: (1)云主机底层架设在虚拟机上IO性能有折损,而UD ...

  5. Protocol-SPI协议

    说明.文章摘自:SPI协议及其工作原理浅析 http://bbs.chinaunix.net/thread-1916003-1-1.html 一.概述. SPI,Serial Peripheral I ...

  6. Midway-ModelProxy — 轻量级的接口配置建模框架

    Midway-ModelProxy - 轻量级的接口配置建模框架 前言 使用Node做前后端分离的开发模式带来了一些性能及开发流程上的优势(见<前后端分离的思考与实践 一>), 但同时也面 ...

  7. cocos游戏的真正入口,用C++实现的demo版本

    1.cocos游戏的出发点 在main函数中有一句:   return CCApplication::sharedApplication()->run(); 2.经过层层深入发现,真正的入口:  ...

  8. “我爱淘”冲刺阶段Scrum站立会议8

    完成任务: 今天最大的成功就是解决了昨天的问题,可以将xml文件的内容解析出来显示到软件中. 计划任务: 可以通过webservice将数据库中的内容解析出来,通过查询可以得到想要的内容. 遇到问题: ...

  9. 揭开NodeJS的神秘面纱!

    一.NodeJS是什么? Node是一个服务器端JavaScript解释器.Node.js是一套用来编写高性能网络服务器的JavaScript包. 二.Node的目标是什么? Node 公开宣称的目标 ...

  10. 【CentOS】samba服务器安装与配置

    参考资料: http://www.cnblogs.com/mchina/archive/2012/12/18/2816717.html 1.简介 2.安装 3.配置 1.简介 Samba是一个能让Li ...