DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调。本例中采用softmax分类器(下一篇随笔中)作为监督学习算法。

RBM与上一篇随笔中一致,通过多层RBM将softmax parameter从 (10L, 784L)降低到(10L, 50L)。单独用softmax分类器也可以得到相近(或者略好)的正确率,所需的时间略长一点。

 from rbm2 import RBM
from softmax import SoftMax
import os
import numpy as np
import cPickle class DBN:
def __init__(self,nlayers,ntype,vlen,hlen):
self.rbm_layers = []
self.nlayers = nlayers
self.ntype = ntype
self.vlen=vlen
self.hlen=hlen def calcRBMForward(self,x):
for rbm in self.rbm_layers:
x = rbm.forward(x.T)
return x def load_param(self,dbnpath,softmaxpath):
weights = cPickle.load(open(dbnpath,'rb'))
self.nlayers = len(weights)
for i in range(self.nlayers):
weight = weights[i]
v,h= np.shape(weight)
rbm = RBM(v,h)
rbm.w = weight
self.rbm_layers.append(rbm)
print "RBM layer%d shape:%s" %(i,str(rbm.w.shape))
self.softmax = SoftMax()
self.softmax.load_theta(softmaxpath)
print "softmax parameter: "+str(self.softmax.theta.shape) def pretrainRBM(self,trainset):
weights = []
for i in range(self.nlayers):
rbm = RBM(self.vlen,self.hlen)
if i == 0:
traindata = trainset
else:
traindata = np.array(outdata.T)
rbm.rbmBB(traindata)
outdata = np.mat(rbm.forward(traindata))
self.rbm_layers.append(rbm)
weights.append(rbm.w)
self.vlen = self.hlen
self.hlen = self.hlen/2
f= open("data/dbn.pkl",'wb')
cPickle.dump(weights,f)
f.close() def fineTune(self,trainset,labelset):
rbm_output = self.calcRBMForward(trainset)
MAXT,step,landa = 100,1,0.01
self.softmax = SoftMax(MAXT,step,landa)
self.softmax.process_train(rbm_output,labelset,self.ntype) def predict(self,x):
rbm_output = self.calcRBMForward(x)
return self.softmax.predict(rbm_output) def validate(self,testset,labelset):
testnum = len(testset)
correctnum = 0
for i in range(testnum):
x = testset[i]
testtype = self.predict(x)
orgtype = labelset[i]
if testtype == orgtype:
correctnum += 1
rate = float(correctnum)/testnum
print "correctnum = %d, sumnum = %d" %(correctnum,testnum)
print "Accuracy:%.2f" %(rate)
return rate dbn = DBN(3,10,784,200)
f = open('mnist.pkl', 'rb')
training_data, validation_data, test_data = cPickle.load(f)
training_inputs = [np.reshape(x, 784) for x in training_data[0]]
data = np.array(training_inputs[:5000]).T
training_inputs = [np.reshape(x, 784) for x in validation_data[0]]
vdata = np.array(training_inputs[:5000])
if not os.path.exists('data/softmax.pkl'): # Run twice
dbn.pretrainRBM(data)
dbn.fineTune(data.T,training_data[1][:5000])
else:
dbn.load_param("data/dbn.pkl","data/softmax.pkl")
dbn.validate(vdata,validation_data[1][:5000]) #RBM layer0 shape:(784L, 200L)
#RBM layer1 shape:(200L, 100L)
#RBM layer2 shape:(100L, 50L)
#softmax parameter: (10L, 50L)
#correctnum = 4357, sumnum = 5000
#Accuracy:0.87

DBN(深度信念网络)的更多相关文章

  1. 机器学习——DBN深度信念网络详解(转)

    深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 简要描述深度神经网络模型. 1.  自联想神经网络 ...

  2. 深度学习(二)--深度信念网络(DBN)

    深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一.受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了 ...

  3. 受限玻尔兹曼机(RBM, Restricted Boltzmann machines)和深度信念网络(DBN, Deep Belief Networks)

    受限玻尔兹曼机对于当今的非监督学习有一定的启发意义. 深度信念网络(DBN, Deep Belief Networks)于2006年由Geoffery Hinton提出.

  4. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...

  5. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...

  6. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...

  7. 理论优美的深度信念网络--Hinton北大最新演讲

    什么是深度信念网络 深度信念网络是第一批成功应用深度架构训练的非卷积模型之一. 在引入深度信念网络之前,研究社区通常认为深度模型太难优化,还不如使用易于优化的浅层ML模型.2006年,Hinton等研 ...

  8. 八.DBN深度置信网络

    BP神经网络是1968年由Rumelhart和Mcclelland为首的科学家提出的概念,是一种按照误差反向传播算法进行训练的多层前馈神经网络,是目前应用比较广泛的一种神经网络结构.BP网络神经网络由 ...

  9. RBM(受限玻尔兹曼机)和深层信念网络(Deep Brief Network)

    目录: 一.RBM 二.Deep Brief Network 三.Deep Autoencoder 一.RBM 1.定义[无监督学习] RBM记住三个要诀:1)两层结构图,可视层和隐藏层:[没输出层] ...

随机推荐

  1. Add a stylesheet link programmatically in ASP.NET

    Here’s a code snippet used to programmatically insert a stylesheet link to an external CSS file: // ...

  2. Ubuntu系统启用Apache Mod_rewrite模块

    在终端中执行 sudo a2enmod rewrite 指令后,即启用了 Mod_rewrite 模块. 另外,也可以通过将 /etc/apache2/mods-available/rewrite.l ...

  3. 13年省赛-B题-连通分量

    题意:求从1到N是否存在一条路,可以遍历每个节点. 思路:求任意两点之间是否通畅即可: 疑惑:完全暴力,bfs但是TLE,问题在于求连通分量(PS:不会)贴别人代码,先保存着. #include &l ...

  4. ERP仓库管理系统(九)

    需求分析: 1.设计库房表,至少包括两个字段,库房名称,库房所属公司的ID(在客户资质审批表中找到对应公司的ID) 2.设计增.删.改.查一套程序,其中的删除要做限制,只要有库存数据存在则不允许删除对 ...

  5. DirectX 文本绘制

    在Direct中进行文本绘制,可以通过Win32程序框架实现,也可以通过DXUT进行绘制. 基于第一篇的Win32框架入门实现非常简单,只需要添加数行代码即可.主要说需要修改的地方. #pragma  ...

  6. HDU 5009

    http://acm.hdu.edu.cn/showproblem.php?pid=5009 题意:一个数列,每个点代表一种颜色,每次选一个区间覆盖,覆盖的代价是区间内颜色种类数的平方,直到覆盖整个数 ...

  7. NSIS

    NSIS 是“Nullsoft 脚本安装系统”(Nullsoft Scriptable Installation System) 的缩写,它是一个免费的 Win32 安装.卸载系统,采用了简洁高效的脚 ...

  8. 触控(Touch) 、 布局(Layout)

    1 使用触控实现一个简易的画板 1.1 问题 触控(Touch)是一个UITouch类型的对象,当用户触摸了屏幕上的视图时自动被创建,通常使用触控实现绘图.涂鸦.手写等功能.本案例使用触控实现一个简易 ...

  9. CentOS 6.6 FTP install

    /************************************************************************* * CentOS 6.6 FTP install ...

  10. csdn第三名

    编号:1026时间:22016年7月18日11:10:35功能:csdn第三名URL :http://blog.csdn.net/phphot