DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调。本例中采用softmax分类器(下一篇随笔中)作为监督学习算法。

RBM与上一篇随笔中一致,通过多层RBM将softmax parameter从 (10L, 784L)降低到(10L, 50L)。单独用softmax分类器也可以得到相近(或者略好)的正确率,所需的时间略长一点。

 from rbm2 import RBM
from softmax import SoftMax
import os
import numpy as np
import cPickle class DBN:
def __init__(self,nlayers,ntype,vlen,hlen):
self.rbm_layers = []
self.nlayers = nlayers
self.ntype = ntype
self.vlen=vlen
self.hlen=hlen def calcRBMForward(self,x):
for rbm in self.rbm_layers:
x = rbm.forward(x.T)
return x def load_param(self,dbnpath,softmaxpath):
weights = cPickle.load(open(dbnpath,'rb'))
self.nlayers = len(weights)
for i in range(self.nlayers):
weight = weights[i]
v,h= np.shape(weight)
rbm = RBM(v,h)
rbm.w = weight
self.rbm_layers.append(rbm)
print "RBM layer%d shape:%s" %(i,str(rbm.w.shape))
self.softmax = SoftMax()
self.softmax.load_theta(softmaxpath)
print "softmax parameter: "+str(self.softmax.theta.shape) def pretrainRBM(self,trainset):
weights = []
for i in range(self.nlayers):
rbm = RBM(self.vlen,self.hlen)
if i == 0:
traindata = trainset
else:
traindata = np.array(outdata.T)
rbm.rbmBB(traindata)
outdata = np.mat(rbm.forward(traindata))
self.rbm_layers.append(rbm)
weights.append(rbm.w)
self.vlen = self.hlen
self.hlen = self.hlen/2
f= open("data/dbn.pkl",'wb')
cPickle.dump(weights,f)
f.close() def fineTune(self,trainset,labelset):
rbm_output = self.calcRBMForward(trainset)
MAXT,step,landa = 100,1,0.01
self.softmax = SoftMax(MAXT,step,landa)
self.softmax.process_train(rbm_output,labelset,self.ntype) def predict(self,x):
rbm_output = self.calcRBMForward(x)
return self.softmax.predict(rbm_output) def validate(self,testset,labelset):
testnum = len(testset)
correctnum = 0
for i in range(testnum):
x = testset[i]
testtype = self.predict(x)
orgtype = labelset[i]
if testtype == orgtype:
correctnum += 1
rate = float(correctnum)/testnum
print "correctnum = %d, sumnum = %d" %(correctnum,testnum)
print "Accuracy:%.2f" %(rate)
return rate dbn = DBN(3,10,784,200)
f = open('mnist.pkl', 'rb')
training_data, validation_data, test_data = cPickle.load(f)
training_inputs = [np.reshape(x, 784) for x in training_data[0]]
data = np.array(training_inputs[:5000]).T
training_inputs = [np.reshape(x, 784) for x in validation_data[0]]
vdata = np.array(training_inputs[:5000])
if not os.path.exists('data/softmax.pkl'): # Run twice
dbn.pretrainRBM(data)
dbn.fineTune(data.T,training_data[1][:5000])
else:
dbn.load_param("data/dbn.pkl","data/softmax.pkl")
dbn.validate(vdata,validation_data[1][:5000]) #RBM layer0 shape:(784L, 200L)
#RBM layer1 shape:(200L, 100L)
#RBM layer2 shape:(100L, 50L)
#softmax parameter: (10L, 50L)
#correctnum = 4357, sumnum = 5000
#Accuracy:0.87

DBN(深度信念网络)的更多相关文章

  1. 机器学习——DBN深度信念网络详解(转)

    深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 简要描述深度神经网络模型. 1.  自联想神经网络 ...

  2. 深度学习(二)--深度信念网络(DBN)

    深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一.受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了 ...

  3. 受限玻尔兹曼机(RBM, Restricted Boltzmann machines)和深度信念网络(DBN, Deep Belief Networks)

    受限玻尔兹曼机对于当今的非监督学习有一定的启发意义. 深度信念网络(DBN, Deep Belief Networks)于2006年由Geoffery Hinton提出.

  4. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...

  5. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...

  6. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...

  7. 理论优美的深度信念网络--Hinton北大最新演讲

    什么是深度信念网络 深度信念网络是第一批成功应用深度架构训练的非卷积模型之一. 在引入深度信念网络之前,研究社区通常认为深度模型太难优化,还不如使用易于优化的浅层ML模型.2006年,Hinton等研 ...

  8. 八.DBN深度置信网络

    BP神经网络是1968年由Rumelhart和Mcclelland为首的科学家提出的概念,是一种按照误差反向传播算法进行训练的多层前馈神经网络,是目前应用比较广泛的一种神经网络结构.BP网络神经网络由 ...

  9. RBM(受限玻尔兹曼机)和深层信念网络(Deep Brief Network)

    目录: 一.RBM 二.Deep Brief Network 三.Deep Autoencoder 一.RBM 1.定义[无监督学习] RBM记住三个要诀:1)两层结构图,可视层和隐藏层:[没输出层] ...

随机推荐

  1. 《JAVA学习笔记(1---13-4)》

    [1]问题: 1.什么叫做面向过程? 2.什么叫做面向对象? 解答: 1: 所谓的面向过程就是我们是一个执行者,我们要开发一个项目,这个项目要求要实现很多功能,作为执行者的我们就需要 去一个一个的找这 ...

  2. Oracle之ROW_NUMBER() OVER函数

    语法:ROW_NUMBER() OVER(ORDER BY COLUMN) 简单的说row_number()从1开始,为每一条分组记录返回一个数字,这里的select ACD_ID,ROW_NUMBE ...

  3. java generic type

    java generic type: 类型安全.类型参数化.不需要强制转换

  4. 为自己的系统定制openstack ceilometer

    一.目的 最近研究了一下ceilometer,目的做一个监控系统,对系统中发生的事件进行处理.ceilometer对openstack各个组件信息的收集方式主要由 推 和  拉 两种. “推”: 就是 ...

  5. Python OpenCV —— Border

    关于border的部分,边缘处理. # -*- coding: utf-8 -*- """ Created on Wed Sep 28 00:58:51 2016 @au ...

  6. How to set up a basic working Appium test environment

    Appium is a test framework targeting devices; although it is very handy and powerful, it is not so s ...

  7. React Native 组件之Image

    Image组件类似于iOS中UIImage控件,该组件可以通过多种方式加载图片资源. 使用方式,加载方式有如下几种: /** * Sample React Native App * https://g ...

  8. iOS传值方式:属性,代理,block,单例,通知

    正向传值均可,反向传值除属性传值不可,其余均可.下面简单介绍: (一)属性传值 第二个界面中的lable显示第一个界面textField中的文本 首先我们建立一个RootViewControllers ...

  9. IOS 作业项目(4)步步完成 画图 程序(剧终)

    // //  CHViewController.m //  SuperDrawingSample // //  Created by JaikenLI on 13-11-21. //  Copyrig ...

  10. iOS 难题解决日志------2层控制器 上面的控制器显示透明

     f ([[[UIDevice currentDevice] systemVersion] floatValue]>=8.0) { nextVC.modalPresentationStyle=U ...