Pedestrian Detection aided by Deep Learning Semantic Tasks

CVPR 2015

本文考虑将语义任务(即:行人属性场景属性)和行人检测相结合,以语义信息协助进行行人检测。先来看一下大致的检测结果(TA-CNN为本文检测结果):

可以看出,由于有了属性信息的协助,其行人检测的精确度有了较大的提升。具体网络架构如下图所示:

首先从各个数据集上进行行人数据集的收集和整理,即:从Caltech上收集行人正样本和负样本,然后从其他数据集上收集 hard negative samples。有了这些行人图像的patch就可以进行行人属性和行人检测的多任务共同学习的框架了。本文提出的TA-CNN框架,是简化版的AlexNet,去掉了一层Conv和fc,加入了 SPV(Structure Projection Vector),其具体计算方法见论文。

其中,论文中考虑到的行人属性和场景属性主要有以下几种:

谈一下我对这篇文章的总体感受:

  本文将属性信息结合到行人检测中,充分利用语义信息排除错误信息的干扰。以ACF行人检测的结果为基准,进行是否是行人的判断,实际上这是将行人检测问题转化为了图像分类问题,而不是像FCN那样进行行人的定位。这一点我觉得挺扯淡的。文中设计了新的联合训练的loss function,并且花了大量篇幅进行了推导和展示。我一直觉得这是一个multi-task的工作,仔细看看标题:人家是用属性信息协助行人检测。额、、无力吐槽、、

  

论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks的更多相关文章

  1. 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

    目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...

  2. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  3. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  4. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  5. 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  6. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  7. 论文翻译:2021_Towards model compression for deep learning based speech enhancement

    论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...

  8. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  9. 论文笔记:(2019CVPR)PointConv: Deep Convolutional Networks on 3D Point Clouds

    目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 ...

随机推荐

  1. js库之art.dialog

    自适应内容 artDialog的特殊UI框架能够适应内容变化,甚至连外部程序动态插入的内容它仍然能自适应,因此你不必去考虑消息内容尺寸使用它.它的消息容器甚至能够根据宽度让文本居中或居左对齐——这一切 ...

  2. Ubuntu 14.10 下Ganglia监控Hadoop集群

    前提是已经安装好Ganglia和Hadoop集群 1 Master节点配置hadoop-metrics2.properties # syntax: [prefix].[source|sink|jmx] ...

  3. 2016-1-6第一个完整APP 私人通讯录的实现 3:添加联系人

    一:创建模型对象:contact用于存放数据,也便于读取加载 #import <Foundation/Foundation.h> @interface contact : NSObject ...

  4. JS监听关闭浏览器事件

    Onunload与Onbeforeunload Onunload,onbeforeunload都是在刷新或关闭时调用,可以在<script>脚本中通过window.onunload来指定或 ...

  5. N个元素组成二叉树的种类

    <算法>中的二叉查找树一节的一道习题. N个元素组成的二叉树固定一个根节点,这个根节点的左右子树组合数为(0,n-1),(1,n-2),(2,n-3)...(n-1,0),假设N个元素组成 ...

  6. 【LeetCode】Rotate Array

    Rotate Array Rotate an array of n elements to the right by k steps. For example, with n = 7 and k = ...

  7. squid 延伸

    #openssl req -new -x509 -days 365 -nodes -out stunnel.pem -keyout stunnel.pem # openssl gendh 512> ...

  8. ld链接问题解决

    http://stackoverflow.com/questions/480764/linux-error-while-loading-shared-libraries-cannot-open-sha ...

  9. C++ 可变参函数实现

    先简单总结一下基本的用法: void sum(int n, ...) { va_list arg_ptr = NULL; //申请一个指针 va_start(arg_ptr, n); //设置指针指向 ...

  10. Why did Jimmy Wales invest in Quora? Is he afraid that it will take over Wikipedia?

    QUESTION: Why did Jimmy Wales invest in Quora? Is he afraid that it will take over Wikipedia? Answer ...