Canu FAQ常见问题
链接:Canu FAQ
Q:- What resources does Canu require for a bacterial genome assembly(细菌基因组组装)? A mammalian(哺乳类) assembly?
- A:
-
Canu is designed to scale resources(自动测量系统硬件资源) to the system it runs on. It will report if the a system does not meet the minimum requirements for a given genome size.
Typically, a bacterial genome can be assembled in 1-10 cpu hours, depending on coverage (~20 min on 16-cores) and 4GB of ram (8GB is recommended). A mammalian genome (such as human) can be assembled in 10-25K cpu hours, depending on coverage (a grid environment is recommended) and at least one machine with 64GB of ram (128GB is recommended).
Q:- What parameters should I use for my genome? Sequencing type? (该用什么参数进行组装?)
- A:
-
By default, Canu is designed to be universal(通用) on a large range of PacBio (C2-P6-C4) and Oxford Nanopore (R6-R9) data. You can adjust parameters to increase efficiency for your datatype. For example, for higher coverage PacBio datasets, especially from inbred(同系交配) samples, you can decrease the error rate (
errorRate=0.013)(覆盖度足够的话可以降低errorrate,1.3%,从而保证更加精准). For recent Nanopore data (R9) 2D data, you can also decrease the default error rate (errorRate=0.013).With R7 1D sequencing data, multiple rounds(多轮) of error correction are helpful. This should not be necessary for sequences over 85% identity. You can run just the correction from Canu with the options
-correct corOutCoverage=500 corMinCoverage=0 corMhapSensitivity=high
for 5-10 rounds, supplying the asm.correctedReads.fasta.gz output from round
i-1to roundi. Assemble with-nanopore-corrected <your data> errorRate=0.1 utgGraphDeviation=50
-
Q: - How do I run Canu on my SLURM/SGE/PBS/LSF/Torque system? (怎么在集群上运行canu)
- A:
- Canu will auto-detect and configure itself to submit on most grids. If your grid requires special options (such as a partition on SLURM or an account code on SGE, specify it with
gridOptions="<your options list>"which will passed to the sheduler by Canu. If you have a grid system but prefer to run locally, specify useGrid=false (平时一般都是设置为false) -
Q: - My asm.contigs.fasta is empty, why? (得到的contig文件是空的?)
- A:
-
By default, canu will split the final output into three files:
- asm.contigs.fasta
- Everything which could be assembled and is part of the primary assembly, including both unique and repetitive elements. Each contig has several flags included on the fasta def line:
- asm.bubbles.fasta
- alternate paths in the graph which could not be merged into the primary assembly.
- asm.unassembled.fasta
- reads/tigs which could not be incorporated into the primary or bubble assemblies.
It is possible for tigs comprised of multiple reads to end up in asm.unassembled.fasta. The default filtering eliminates(消除了) anything with < 2 reads, shorter than 1000bp, or comprised of mostly a single sequence (>75%). The filtering is controlled by the contigFilter parameter which takes 5 values.
contigFilter
minReads
minLength
singleReadSpan
lowCovSpan
lowCovDepthThe default filtering is
2 1000 0.75 0.75 2. If you are assembling amplified data or viral data, it is possible your assembly will be flagged as unassembled. In those cases, you can turn off the filtering with the parameterscontigFilter="2 1000 1.0 1.0 2"
-
Q: - Why is my assembly is missing my favorite short plasmid X?
- A:
-
The first step in Canu is to find high-error overlaps and generate corrected sequences for subsequent assembly. This is currently the fastest step in Canu. By default, only the longest 40X of data (based on the specified genome size) is used for correction. If you have a dataset with uneven coverage or small plasmids, correcting the longest 40X may not give you sufficient coverage of your genome/plasmid. In these cases, you can set
corOutCoverage=1000
Or any large value greater than your total input coverage which will correct and assemble all input data, at the expense of runtime. This option is also recommended for metagenomic datasets where all data is useful for assembly.
-
Q: - Why do I get only 30X of corrected data?
- A:
-
By default, only the longest 40X of data (based on the specified genome size) is used for correction. Typically, some reads are trimmed during correction due to being chimeric or having erroneous sequence, resulting in a loss of 20-25% (30X output). You can force correction to be non-lossy by setting(数据全部使用、无损输出)
corMinCoverage=0
In which case the corrected reads output will be the same length as the input data, keeping any high-error unsupported bases. Canu will trim these in downstream steps before assembly.
-
Q: - What is the minimum coverage required to run Canu? (最小的覆盖度要求)
- A:
-
We have found that on eukaryotic genomes(真核生物基因组) >=20X typically begins to outperform(胜过) current hybrid methods(混合方法). For low coverage datasets (<=30X) we recommend the following parameters
corMinCoverage=0 errorRate=0.035
For high-coverage datasets (typically >=60X) you can decrease the error rate since the higher number of reads should allow sufficient assembly from only the best subset
errorRate=0.013
However, the above is mainly an optimization for speed and will not affect your assembly continuity.
-
Q: - My genome is AT/GC rich, do I need to adjust parameters? (基因组AT或GC含量偏差比较大怎么设置参数?)
- A:
-
On bacterial genomes, typically no(细菌的不需要设置). On repetitive genomes with AT<=25 or 75>=AT (or GC) the sequence biases the Jaccard estimate used by MHAP. In those cases setting
corMaxEvidenceErate=0.15
has been sufficient to correct for the bias in our testing. In general, with high coverage repetitive genomes(高覆盖率重复的基因组) (such as plants) it can be beneficial to set the above parameter as it will eliminate repetitive matches, speed up the assembly, and sometime improve unitigs.
Canu FAQ常见问题的更多相关文章
- [译]Selenium Python文档:八、附录:FAQ常见问题
另外一个FAQ:https://github.com/SeleniumHQ/selenium/wiki/Frequently-Asked-Questions 8.1.怎样使用ChromeDriver ...
- 收集Magento FAQ常见问题处理办法
问题:Magento如何下载? 解答:Magento的英文官方下载地址为:http://www.magentocommerce.com/download 注意:需要注册后才可以下载,而且请下载完整版本 ...
- LNMP 常见问题(FAQ)
常见问题(FAQ)常见问题关键词快速索引 我们为什么需要采用LNMP架构?原因不在重复,请看:关于 LNMP一键安装包支持哪些Linux发行版?目前支持CentOS(RadHat).Debian.Ub ...
- 动手实践记录(利用django创建一个博客系统)
1.添加一个分类的标签,和主表的关系是 外键 class Category(models.Model): """ 分类 """ name = ...
- mybase 用户教程
一.安装.卸载 1.安装 在Mac OS X环境下,可通过打开下载的.dmg文件,再把myBase图标拖到应用程序文件夹即可安装.然后通过双击程序图标运行程序 2.卸载 对于Mac OS X,把myB ...
- HTML 5 代码
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...
- 学习地址(oraclemysqllinux)
1.安装配置 http://blog.chinaunix.net/uid-27126319-id-3466193.htmlhttp://www.cnblogs.com/gaojun/archive/2 ...
- php 连接 mssql 常见的所有问题
php连接mssql时 ntwdblib.dllPHP连接MSSQL配置和PHP代码演示 收藏 如果实现了PHP和MySQL链接了,PHP和MSSQL的链接其实很简单: 支持MSSQL的本地链接和远程 ...
- NSIS使用教程(安装包制作安装文件教程,如何封装打包文件) 中文版
nsis中文版(Nullsoft Scriptable Install System)是一个专业的开源的可以用来封闭Windows程序的实用工具,是一个开源的 Windows 系统下安装程序制作程序. ...
随机推荐
- linux中的shell脚本编程
[1]shell脚本 1--- shell命令 2--- 控制语句(新的语法) (Shell命令的有序集合) [2]创建shell脚本文件 1--- 1.sh 2--- chmod 777 1.sh ...
- Bootstrap_排版
标题: Bootstrap和普通的HTML页面一样,定义标题都是使用标签<h1>到<h6>,只不过Bootstrap覆盖了其默认的样式,使用其在所有浏览器下显示的效果一样,具体 ...
- C++实现二叉树,运用模板,界面友好,操作方便 运行流畅
//.h文件 #ifndef TREE_H #define TREE_H #include<iostream> #include<iomanip> using namespac ...
- sql注入在线检测(sqlmapapi)
版权:http://blog.csdn.net/yueguanghaidao/article/details/38026431 每次看都不方便 摘抄下来 之前一搞渗透的同事问我,sqlmapapi ...
- [SAP ABAP开发技术总结]初始值、空、NULL、INITIAL等问题
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- 迷你sql profile,给缺少sql跟踪的朋友们
如果你的数据库没有sqlprofile,看这里. 如果你没时间装sqlserver那一系列的东西,看看这里,也许能解决呢. 这是一个迷你版的sqlprofile ,在win7下测试,链接sqlserv ...
- 虚拟机guest为windows7的环境下安装破解版simplify3d_3.0.2
情形: 1.主机(host):ubuntu 2.虚拟机里安装的操作系统版本(guest):windows 7专业版 3.simplify3d破解版版本:3.0.2(破解需要的工具均在下文的百度云地址里 ...
- FZU 2218 Simple String Problem(简单字符串问题)
Description 题目描述 Recently, you have found your interest in string theory. Here is an interesting que ...
- shell script的连接符是逗号,不是英文的句号
举个例子: gawk 'BEGIN{ var[ var[ var[ var[ asort(var,test) for(i in test) print ] }' 这时候敲回车就能输出 Index: - ...
- Linux配置apache等系列
1.Linux下安装.配置PHP环境 2.ubuntu12.0.4安装apache, php ,mysql 3 CentOs中mysql的安装与配置