链接:Canu FAQ



Q
:
What resources does Canu require for a bacterial genome assembly(细菌基因组组装)?   A mammalian(哺乳类) assembly?
A:

Canu is designed to scale resources(自动测量系统硬件资源) to the system it runs on. It will report if the a system does not meet the minimum requirements for a given genome size.

Typically, a bacterial genome can be assembled in 1-10 cpu hours, depending on coverage (~20 min on 16-cores) and 4GB of ram (8GB is recommended). A mammalian genome (such as human) can be assembled in 10-25K cpu hours, depending on coverage (a grid environment is recommended) and at least one machine with 64GB of ram (128GB is recommended).



Q
:
What parameters should I use for my genome? Sequencing type? (该用什么参数进行组装?)
A:

By default, Canu is designed to be universal(通用) on a large range of PacBio (C2-P6-C4) and Oxford Nanopore (R6-R9) data. You can adjust parameters to increase efficiency for your datatype. For example, for higher coverage PacBio datasets, especially from inbred(同系交配) samples, you can decrease the error rate (errorRate=0.013)(覆盖度足够的话可以降低errorrate,1.3%,从而保证更加精准). For recent Nanopore data (R9) 2D data, you can also decrease the default error rate (errorRate=0.013).

With R7 1D sequencing data, multiple rounds(多轮) of error correction are helpful. This should not be necessary for sequences over 85% identity. You can run just the correction from Canu with the options

-correct corOutCoverage=500 corMinCoverage=0 corMhapSensitivity=high

for 5-10 rounds, supplying the asm.correctedReads.fasta.gz output from round i-1 to round i. Assemble with

-nanopore-corrected <your data> errorRate=0.1 utgGraphDeviation=50


Q
:
How do I run Canu on my SLURM/SGE/PBS/LSF/Torque system? (怎么在集群上运行canu)
A:
Canu will auto-detect and configure itself to submit on most grids. If your grid requires special options (such as a partition on SLURM or an account code on SGE, specify it with gridOptions="<your options list>" which will passed to the sheduler by Canu. If you have a grid system but prefer to run locally, specify useGrid=false (平时一般都是设置为false)


Q
:
My asm.contigs.fasta is empty, why? (得到的contig文件是空的?)
A:

By default, canu will split the final output into three files:

asm.contigs.fasta
Everything which could be assembled and is part of the primary assembly, including both unique and repetitive elements. Each contig has several flags included on the fasta def line:
asm.bubbles.fasta
alternate paths in the graph which could not be merged into the primary assembly.
asm.unassembled.fasta
reads/tigs which could not be incorporated into the primary or bubble assemblies.

It is possible for tigs comprised of multiple reads to end up in asm.unassembled.fasta. The default filtering eliminates(消除了) anything with < 2 reads, shorter than 1000bp, or comprised of mostly a single sequence (>75%). The filtering is controlled by the contigFilter parameter which takes 5 values.

contigFilter
minReads
minLength
singleReadSpan
lowCovSpan
lowCovDepth

The default filtering is 2 1000 0.75 0.75 2. If you are assembling amplified data or viral data, it is possible your assembly will be flagged as unassembled. In those cases, you can turn off the filtering with the parameters

contigFilter="2 1000 1.0 1.0 2"


Q
:
Why is my assembly is missing my favorite short plasmid X?
A:

The first step in Canu is to find high-error overlaps and generate corrected sequences for subsequent assembly. This is currently the fastest step in Canu. By default, only the longest 40X of data (based on the specified genome size) is used for correction. If you have a dataset with uneven coverage or small plasmids, correcting the longest 40X may not give you sufficient coverage of your genome/plasmid. In these cases, you can set

corOutCoverage=1000

Or any large value greater than your total input coverage which will correct and assemble all input data, at the expense of runtime. This option is also recommended for metagenomic datasets where all data is useful for assembly.


Q
:
Why do I get only 30X of corrected data?
A:

By default, only the longest 40X of data (based on the specified genome size) is used for correction. Typically, some reads are trimmed during correction due to being chimeric or having erroneous sequence, resulting in a loss of 20-25% (30X output). You can force correction to be non-lossy by setting(数据全部使用、无损输出)

corMinCoverage=0

In which case the corrected reads output will be the same length as the input data, keeping any high-error unsupported bases. Canu will trim these in downstream steps before assembly.


Q
:
What is the minimum coverage required to run Canu? (最小的覆盖度要求)
A:

We have found that on eukaryotic genomes(真核生物基因组) >=20X typically begins to outperform(胜过) current hybrid methods(混合方法). For low coverage datasets (<=30X) we recommend the following parameters

corMinCoverage=0 errorRate=0.035

For high-coverage datasets (typically >=60X) you can decrease the error rate since the higher number of reads should allow sufficient assembly from only the best subset

errorRate=0.013

However, the above is mainly an optimization for speed and will not affect your assembly continuity.


Q
:
My genome is AT/GC rich, do I need to adjust parameters? (基因组AT或GC含量偏差比较大怎么设置参数?)
A:

On bacterial genomes, typically no(细菌的不需要设置). On repetitive genomes with AT<=25 or 75>=AT (or GC) the sequence biases the Jaccard estimate used by MHAP. In those cases setting

corMaxEvidenceErate=0.15

has been sufficient to correct for the bias in our testing. In general, with high coverage repetitive genomes(高覆盖率重复的基因组) (such as plants) it can be beneficial to set the above parameter as it will eliminate repetitive matches, speed up the assembly, and sometime improve unitigs.

Canu FAQ常见问题的更多相关文章

  1. [译]Selenium Python文档:八、附录:FAQ常见问题

    另外一个FAQ:https://github.com/SeleniumHQ/selenium/wiki/Frequently-Asked-Questions 8.1.怎样使用ChromeDriver ...

  2. 收集Magento FAQ常见问题处理办法

    问题:Magento如何下载? 解答:Magento的英文官方下载地址为:http://www.magentocommerce.com/download 注意:需要注册后才可以下载,而且请下载完整版本 ...

  3. LNMP 常见问题(FAQ)

    常见问题(FAQ)常见问题关键词快速索引 我们为什么需要采用LNMP架构?原因不在重复,请看:关于 LNMP一键安装包支持哪些Linux发行版?目前支持CentOS(RadHat).Debian.Ub ...

  4. 动手实践记录(利用django创建一个博客系统)

    1.添加一个分类的标签,和主表的关系是 外键 class Category(models.Model): """ 分类 """ name = ...

  5. mybase 用户教程

    一.安装.卸载 1.安装 在Mac OS X环境下,可通过打开下载的.dmg文件,再把myBase图标拖到应用程序文件夹即可安装.然后通过双击程序图标运行程序 2.卸载 对于Mac OS X,把myB ...

  6. HTML 5 代码

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...

  7. 学习地址(oraclemysqllinux)

    1.安装配置 http://blog.chinaunix.net/uid-27126319-id-3466193.htmlhttp://www.cnblogs.com/gaojun/archive/2 ...

  8. php 连接 mssql 常见的所有问题

    php连接mssql时 ntwdblib.dllPHP连接MSSQL配置和PHP代码演示 收藏 如果实现了PHP和MySQL链接了,PHP和MSSQL的链接其实很简单: 支持MSSQL的本地链接和远程 ...

  9. NSIS使用教程(安装包制作安装文件教程,如何封装打包文件) 中文版

    nsis中文版(Nullsoft Scriptable Install System)是一个专业的开源的可以用来封闭Windows程序的实用工具,是一个开源的 Windows 系统下安装程序制作程序. ...

随机推荐

  1. Reflection实现通用增删改

    新增 /// <summary> /// 通用新增方法 /// </summary> /// <param name="arr">一行数据封装的 ...

  2. 循环嵌套,while循环,穷举迭代循环

    一.循环嵌套 简单的就是说,在一个for循环里嵌入多个小for循环. 其中,在打矩形.三角形和乘法口诀表之类的题目中,大for循环一般表示的是行数,其余的小for循环式每一行中的内容. 二.while ...

  3. 抓取Js动态生成数据且以滚动页面方式分页的网页

    代码也可以从我的开源项目HtmlExtractor中获取. 当我们在进行数据抓取的时候,如果目标网站是以Js的方式动态生成数据且以滚动页面的方式进行分页,那么我们该如何抓取呢? 如类似今日头条这样的网 ...

  4. wireshark抓包直观图解 TCP三次握手/四次挥手详解

    转http://www.seanyxie.com/category/linux/ 作者:seanyxie |   一. TCP/IP协议族 TCP/IP是一个协议族,通常分不同层次进行开发,每个层次负 ...

  5. [cdoj1380] Xiper的奇妙历险(3) (八数码问题 bfs + 预处理)

    快要NOIP 2016 了,现在已经停课集训了.计划用10天来复习以前学习过的所有内容.首先就是搜索. 八数码是一道很经典的搜索题,普通的bfs就可求出.为了优化效率,我曾经用过康托展开来优化空间,甚 ...

  6. cvs版本控制器

    CVS 版本控制器   首先我们要来明确 :为什么要学习CVS •项目开发靠的是一个团队的能力,很少有大中型项目是由个人完成的.对于团队开发来讲---能控制每个人的分工和权限, 可以让多个人同时编辑同 ...

  7. 去处HTML标签

    JavaScript去处HTML标签 function removeHTMLTag(str) { str = str.replace(/<\/?[^>]*>/g, ''); //去除 ...

  8. 【leetcode❤python】 58. Length of Last Word

    #-*- coding: UTF-8 -*-#利用strip函数去掉字符串去除空格(其实是去除两边[左边和右边]空格)#利用split分离字符串成列表class Solution(object):   ...

  9. Logical Address->Linear Address->Physical Address

    3 registers for starting pos: LDTR, GDTR( register for starting addr of DT) ---段描述符每个段由一个8字节(64位)的段描 ...

  10. Margin and Padding in Windows Forms Controls

    https://msdn.microsoft.com/en-us/library/ms229627.aspx Margin and Padding Precise placement of contr ...