Semi-prime H-numbers

Time Limit: 1000MS Memory Limit: 65536K

Total Submissions: 8069 Accepted: 3479

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,… are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it’s the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21

85

789

0

Sample Output

21 0

85 5

789 62

Source

Waterloo Local Contest, 2006.9.30

类似素数筛

#include <set>
#include <map>
#include <list>
#include <stack>
#include <cmath>
#include <queue>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define PI cos(-1.0)
#define RR freopen("input.txt","r",stdin)
using namespace std; typedef long long LL; const int MAX = 1e6+100; int vis[MAX]; int Dp[MAX]; int main()
{
memset(vis,0,sizeof(vis));
for(LL i=5;i<MAX;i+=4)//标记Semi-prime H-numbers
{
for(LL j=i;j<MAX;j+=4)
{
LL ans=i*j;
if(ans>MAX)
{
break;
}
if(vis[i]==0&&vis[j]==0)
{
vis[ans]=1;
}
else
{
vis[ans]=-1;
}
}
}
Dp[0]=0;
for(int i=1;i<MAX;i++)//记录从1-i之间的Semi-prime H-numbers个数
{
if(vis[i]==1)
{
Dp[i]=Dp[i-1]+1;
}
else
{
Dp[i]=Dp[i-1];
}
}
int n;
while(scanf("%d",&n)&&n)
{
printf("%d %d\n",n,Dp[n]);
}
return 0;
}

Semi-prime H-numbers(筛法)的更多相关文章

  1. JD 题目1040:Prime Number (筛法求素数)

    OJ题目:click here~~ 题目分析:输出第k个素数 贴这么简单的题目,目的不清纯 用筛法求素数的基本思想是:把从1開始的.某一范围内的正整数从小到大顺序排列, 1不是素数,首先把它筛掉.剩下 ...

  2. (全国多校重现赛一) H Numbers

    zk has n numbers a1,a2,...,ana1,a2,...,an. For each (i,j) satisfying 1≤i<j≤n, zk generates a new ...

  3. 数学--数论--HDU2136 Largest prime factor 线性筛法变形

    Problem Description Everybody knows any number can be combined by the prime number. Now, your task i ...

  4. AOJ - 0009 Prime Number (素数筛法) && AOJ - 0005 (求最大公约数和最小公倍数)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34870 求n内的素数个数. /* ********************* ...

  5. POJ 3126 Prime Path(筛法,双向搜索)

    题意:一个4位的素数每次变动一个数位,中间过程也要上素数,问变成另一个的最小步数. 线性筛一遍以后bfs就好.我写的双向,其实没有必要. #include<cstdio> #include ...

  6. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  7. Prime Matrix(暴力出奇迹)

    Description You've got an n × m matrix. The matrix consists of integers. In one move, you can apply ...

  8. 河南省第十届省赛 Binary to Prime

    题目描述: To facilitate the analysis of  a DNA sequence,  a DNA sequence is represented by a binary  num ...

  9. Largest prime factor

    problem 3:Largest prime factor 题意:求600851475143的最大的质因数 代码如下: #ifndef PRO3_H_INCLUDED #define PRO3_H_ ...

  10. Codeforces Round #324 (Div. 2) D. Dima and Lisa 哥德巴赫猜想

    D. Dima and Lisa Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/probl ...

随机推荐

  1. Java基础之集合框架——在文件中存储地图(TryPhoneBook2)

    控制台程序. import java.io.*; public class Person implements Comparable<Person>, Serializable { // ...

  2. leetcode-5 最长回文子串(动态规划)

    题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...

  3. JaveScript——简介、语法

    JS简介: 1.JavaScript是个什么东西? 它是个脚本语言,需要有宿主文件,它的宿主文件是HTML文件. 2.它与Java什么关系? 没有什么直接的联系,Java是Sun公司(已被Oracle ...

  4. html 字体加粗

    <font style="font-weight: bold;">无敌小昆虫</font> <font>无敌小昆虫</font> f ...

  5. c# 隐藏 控制台应用程序

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  6. java程序运行时内存分配详解 (转)

    转自:http://www.tuicool.com/articles/uU77v2 一.  基本概念 每运行一个java程序会产生一个java进程,每个java进程可能包含一个或者多个线程,每一个Ja ...

  7. Grunt 自动化部署之css、image、javascript、html压缩Gruntfile.js配置

    grunt.initConfig方法 用于模块配置,它接受一个对象作为参数.该对象的成员与使用的同名模块一一对应. 每个目标的具体设置,需要参考该模板的文档.就cssmin来讲,minify目标的参数 ...

  8. JSon_零基础_003_将Map集合对象转换为JSon格式的对象字符串,返回给界面

    将Map集合对象转换为JSon格式的对象字符串,返回给界面 需导入的jar包: 编写servlet: package com.west.webcourse.servlet; import java.i ...

  9. SQL Server XML基础学习之<7>--XML modify() 方法对 XML 数据中插入、更新或删除

    /*------------------------------------------------------------------------------+ #| = : = : = : = : ...

  10. cometd使用-bayeux协议(读法:贝叶)

    bayeux.createChannelIfAbsent("/**", new ServerChannel.Initializer() { @Override public voi ...